AutoPH4: An Automated Method for Generating Pharmacophore Models from Protein Binding Pockets

药效团 计算机科学 计算生物学 化学
作者
Siduo Jiang,Miklós Fehér,Christopher I. Williams,Brian Cole,David E. Shaw
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:60 (9): 4326-4338 被引量:19
标识
DOI:10.1021/acs.jcim.0c00121
摘要

Pharmacophore models are widely used in computational drug discovery (e.g., in the virtual screening of drug molecules) to capture essential information about interactions between ligands and a target protein. Generating pharmacophore models from protein structures is typically a manual process, but there has been growing interest in automated pharmacophore generation methods. Automation makes feasible the processing of large numbers of protein conformations, such as those generated by molecular dynamics (MD) simulations, and thus may help achieve the longstanding goal of incorporating protein flexibility into virtual screening workflows. Here, we present AutoPH4, a new automated method for generating pharmacophore models based on protein structures; we show that a virtual screening workflow incorporating AutoPH4 ranks compounds more accurately than any other pharmacophore-based virtual screening workflow for which results on a public benchmark have been reported. The strong performance of the virtual screening workflow indicates that the AutoPH4 component of the workflow generates high-quality pharmacophores, making AutoPH4 promising for use in future virtual screening workflows as well, such as ones that use conformations generated by MD simulations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Della完成签到,获得积分10
2秒前
LXx完成签到 ,获得积分10
2秒前
不配.应助kudoukoumei采纳,获得10
3秒前
ding应助醒醒采纳,获得10
4秒前
6秒前
pursuing发布了新的文献求助10
6秒前
佳远发布了新的文献求助10
11秒前
汉堡包应助你的男孩DD采纳,获得10
13秒前
辞轲完成签到,获得积分10
13秒前
Whiaper完成签到,获得积分10
14秒前
20秒前
景辣条应助科研通管家采纳,获得10
24秒前
ygr应助科研通管家采纳,获得20
24秒前
24秒前
景辣条应助科研通管家采纳,获得10
24秒前
上官若男应助科研通管家采纳,获得10
24秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
星辰大海应助科研通管家采纳,获得10
25秒前
景辣条应助科研通管家采纳,获得10
25秒前
0128lun应助科研通管家采纳,获得10
25秒前
27秒前
tachang完成签到,获得积分10
29秒前
30秒前
周浩宇发布了新的文献求助10
31秒前
荼柒完成签到,获得积分10
32秒前
懵懂的子骞完成签到 ,获得积分10
34秒前
ddd完成签到,获得积分10
42秒前
荼柒完成签到,获得积分10
43秒前
44秒前
44秒前
Lucas应助负责的柏柳采纳,获得30
47秒前
SBGLP发布了新的文献求助10
47秒前
老北京发布了新的文献求助10
47秒前
47秒前
老北京发布了新的文献求助10
48秒前
老北京发布了新的文献求助10
49秒前
50秒前
甜美小蕾发布了新的文献求助10
51秒前
荼柒完成签到,获得积分10
54秒前
周浩宇完成签到,获得积分20
59秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138583
求助须知:如何正确求助?哪些是违规求助? 2789532
关于积分的说明 7791599
捐赠科研通 2445937
什么是DOI,文献DOI怎么找? 1300750
科研通“疑难数据库(出版商)”最低求助积分说明 626058
版权声明 601079