Functional compensation dominates the assembly of plant rhizospheric bacterial community

根际 生物 营养循环 营养物 大块土 微生物种群生物学 植物 生态学 农学 细菌 遗传学
作者
Yi Ren,Weibing Xun,Yan He,Aiyuan Ma,Wu Xiong,Qirong Shen,Ruifu Zhang
出处
期刊:Soil Biology & Biochemistry [Elsevier]
卷期号:150: 107968-107968 被引量:68
标识
DOI:10.1016/j.soilbio.2020.107968
摘要

Plant rhizosphere microbes play a key role in plant-soil feedbacks. However, the intrinsic principles governing the assembly of the rhizosphere microbial community remain unclear. To understand these principles, we studied the taxonomical and functional characteristics of the reassembled maize rhizosphere bacterial communities after transplanting between soils. The composition of the rhizosphere bacterial community was measured by high-throughput amplicon-based Illumina MiSeq sequencing of the V4 region of the 16S ribosomal RNA (rRNA) gene. The rhizosphere functional profile was assessed using 16S rRNA data in the PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved State) software. We found that the reassembled rhizosphere bacterial community was recruited from both soil and endosphere communities. The assembly and functional traits of the rhizosphere bacterial community were associated with the concentrations of soil available nutrients. The most important rhizospheric functions were to improve host stress tolerance, followed by nutrient cycling functions. The rhizosphere bacterial taxa that improved host stress tolerance were in low abundance and were primarily derived from the surrounding bulk soil. Moreover, the rhizosphere nutrient cycling functions were marginalized in nutrient-excessive soils. Plants may sacrifice stress tolerance functions and enhance compensatory colonization of nutrient cycling-related endophytes in the rhizosphere in nutrient-deficient soils. Our results demonstrate that the levels of soil available nutrients mediate the assembly of rhizosphere bacterial communities to satisfy plant-required functions. This assembly principle is useful for manipulating the bacterial communities of plant roots to improve agricultural sustainability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
仁爱的老四完成签到 ,获得积分10
1秒前
李健的小迷弟应助学术z采纳,获得10
1秒前
科研通AI5应助归海紫翠采纳,获得30
2秒前
热情的初兰完成签到 ,获得积分10
3秒前
顺顺完成签到,获得积分10
3秒前
莫妮卡卡完成签到,获得积分10
3秒前
nbing完成签到,获得积分10
4秒前
SCI发布了新的文献求助50
4秒前
小猫多鱼完成签到,获得积分10
5秒前
5秒前
5秒前
默默尔烟发布了新的文献求助10
5秒前
5秒前
5秒前
宁静致远完成签到,获得积分10
5秒前
天天快乐应助内向秋寒采纳,获得10
8秒前
sfafasfsdf完成签到,获得积分10
8秒前
8秒前
luuuuuu发布了新的文献求助10
9秒前
lai发布了新的文献求助30
9秒前
9秒前
zrk发布了新的文献求助10
9秒前
9秒前
10秒前
ZJJ完成签到,获得积分10
10秒前
花开的声音1217完成签到,获得积分10
11秒前
古药完成签到,获得积分10
12秒前
赘婿应助烟雨行舟采纳,获得10
12秒前
seal发布了新的文献求助10
13秒前
13秒前
14秒前
不吃香菜发布了新的文献求助10
14秒前
RC_Wang应助ZJJ采纳,获得10
14秒前
Chridy发布了新的文献求助10
15秒前
15秒前
asipilin完成签到,获得积分10
15秒前
鼻揩了转去应助lixoii采纳,获得20
15秒前
16秒前
万能图书馆应助Steve采纳,获得10
17秒前
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794