A Predictive Framework for Dynamic Heavy-Duty Vehicle Platoon Coordination

背景(考古学) 燃料效率 卡车 计算机科学 汽车工程 车辆动力学 控制(管理) 工程类 生物 古生物学 人工智能
作者
Sebastian van de Hoef,Jonas Mårtensson,Dimos V. Dimarogonas,Karl Henrik Johansson
出处
期刊:ACM Transactions on Cyber-Physical Systems [Association for Computing Machinery]
卷期号:4 (1): 1-25 被引量:24
标识
DOI:10.1145/3299110
摘要

This article describes a system to facilitate dynamic en route formation of heavy-duty vehicle platoons with the goal of reducing fuel consumption. Safe vehicle platooning is a maturing technology that leverages modern sensor, control, and communication technology to automatically regulate the inter-vehicle distances. Truck platooning has been shown to reduce fuel consumption through slipstreaming by up to 10%; under realistic highway-driving conditions. To further benefit from this technology, a platoon coordinator is proposed, which interfaces with fleet management systems and suggests how platoons can be formed in a fuel-efficient manner over a large region. The coordinator frequently updates the plans to react to newly available information. This way, it requires a minimum of customization with respect to the logistic operations. We discuss the system architecture in detail and introduce important underlying methodological foundations. Plans are derived in computationally tractable stages optimizing fuel savings from platooning. The effectiveness of this approach is verified in a simulation study. It shows that the coordinated platooning system can improve over spontaneously occurring platooning even under the presence of disturbances. A real demonstrator has also been developed. We present data from an experiment in which three vehicles were coordinated to form a platoon on public highways under normal traffic conditions. It demonstrates the feasibility of coordinated en route platoon formation with current communication and on-board technology. Simulations and experiments support that the proposed system is technically feasible and a potential solution to the problem of using vehicle platooning in an operational context.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
和谐灯泡发布了新的文献求助10
1秒前
2秒前
3秒前
mhl11应助香蕉秋寒采纳,获得20
3秒前
qiaqia0326完成签到,获得积分10
4秒前
5秒前
民名命完成签到,获得积分10
5秒前
lccccc完成签到 ,获得积分10
6秒前
辛夷完成签到 ,获得积分10
6秒前
zyn完成签到,获得积分10
7秒前
阿狸发布了新的文献求助10
7秒前
吕别皱眉啊完成签到,获得积分10
7秒前
DXiao完成签到 ,获得积分10
7秒前
Gravity应助健康的半仙采纳,获得20
8秒前
Gravity应助健康的半仙采纳,获得20
8秒前
8秒前
9秒前
脑洞疼应助科研通管家采纳,获得10
9秒前
12秒前
搜集达人应助剑舞红颜笑采纳,获得10
12秒前
13秒前
11发布了新的文献求助10
14秒前
yao chen完成签到,获得积分10
16秒前
来杯赤野完成签到,获得积分10
17秒前
17秒前
17秒前
给你最后的血完成签到 ,获得积分10
18秒前
旺旺小小贝完成签到,获得积分10
18秒前
18秒前
drift完成签到,获得积分10
18秒前
毕不了业的凡阿哥完成签到,获得积分10
18秒前
jiabu完成签到,获得积分10
19秒前
子车茗应助淡然觅荷采纳,获得10
19秒前
叱咤月海鱼鱼猫完成签到,获得积分10
20秒前
小熊熊完成签到,获得积分10
21秒前
5High_0完成签到 ,获得积分10
21秒前
liucheng发布了新的文献求助10
21秒前
胡乱说兔的熊完成签到,获得积分10
21秒前
和谐鼠标发布了新的文献求助10
22秒前
淡定发布了新的文献求助10
22秒前
高分求助中
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Equality: What It Means and Why It Matters 300
A new Species and a key to Indian species of Heirodula Burmeister (Mantodea: Mantidae) 300
Apply error vector measurements in communications design 300
Synchrotron X-Ray Methods in Clay Science 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3347218
求助须知:如何正确求助?哪些是违规求助? 2973707
关于积分的说明 8660707
捐赠科研通 2654207
什么是DOI,文献DOI怎么找? 1453525
科研通“疑难数据库(出版商)”最低求助积分说明 672939
邀请新用户注册赠送积分活动 663018