Anomaly Detection Based on Convolutional Recurrent Autoencoder for IoT Time Series

滑动窗口协议 计算机科学 自编码 异常检测 人工智能 特征提取 预处理器 数据挖掘 特征(语言学) 数据预处理 窗口(计算) 模式识别(心理学) 深度学习 卷积神经网络 循环神经网络 时间序列 机器学习 人工神经网络 操作系统 哲学 语言学
作者
Chunyong Yin,Sun Zhang,Jin Wang,Naixue Xiong
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:52 (1): 112-122 被引量:238
标识
DOI:10.1109/tsmc.2020.2968516
摘要

Internet of Things (IoT) realizes the interconnection of heterogeneous devices by the technology of wireless and mobile communication. The data of target regions are collected by widely distributed sensing devices and transmitted to the processing center for aggregation and analysis as the basis of IoT. The quality of IoT services usually depends on the accuracy and integrity of data. However, due to the adverse environment or device defects, the collected data will be anomalous. Therefore, the effective method of anomaly detection is the crucial issue for guaranteeing service quality. Deep learning is one of the most concerned technology in recent years which realizes automatic feature extraction from raw data. In this article, the integrated model of the convolutional neural network (CNN) and recurrent autoencoder is proposed for anomaly detection. Simple combination of CNN and autoencoder cannot improve classification performance, especially, for time series. Therefore, we utilize the two-stage sliding window in data preprocessing to learn better representations. Based on the characteristics of the Yahoo Webscope S5 dataset, raw time series with anomalous points are extended to fixed-length sequences with normal or anomaly label via the first-stage sliding window. Then, each sequence is transformed into continuous time-dependent subsequences by another smaller sliding window. The preprocessing of the two-stage sliding window can be considered as low-level temporal feature extraction, and we empirically prove that the preprocessing of the two-stage sliding window will be useful for high-level feature extraction in the integrated model. After data preprocessing, spatial and temporal features are extracted in CNN and recurrent autoencoder for the classification in fully connected networks. Empiric results show that the proposed model has better performances on multiple classification metrics and achieves preferable effect on anomaly detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
北彧发布了新的文献求助10
刚刚
樊伟诚完成签到,获得积分10
刚刚
1秒前
领导范儿应助田一采纳,获得10
1秒前
syf发布了新的文献求助10
1秒前
李健应助kang采纳,获得10
2秒前
李子完成签到,获得积分10
2秒前
3秒前
Minigun完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
xqn完成签到,获得积分10
4秒前
linddda完成签到,获得积分10
4秒前
yoyo完成签到,获得积分20
5秒前
丘比特应助哈哈哈采纳,获得10
5秒前
5秒前
完美世界应助岁月如酒采纳,获得10
5秒前
轻松的雨旋完成签到,获得积分10
7秒前
顺利的凡蕾完成签到 ,获得积分10
7秒前
CodeCraft应助北彧采纳,获得10
8秒前
冷静百川完成签到 ,获得积分10
8秒前
9秒前
9秒前
丹丹完成签到 ,获得积分10
9秒前
9秒前
9秒前
10秒前
zhouting发布了新的文献求助10
10秒前
2105完成签到,获得积分10
10秒前
11秒前
11秒前
bkagyin应助white采纳,获得50
12秒前
nihao完成签到,获得积分10
13秒前
14秒前
zy3637发布了新的文献求助20
14秒前
14秒前
14秒前
wanghui完成签到,获得积分10
14秒前
普通用户30号完成签到 ,获得积分10
15秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3735149
求助须知:如何正确求助?哪些是违规求助? 3279042
关于积分的说明 10012684
捐赠科研通 2995593
什么是DOI,文献DOI怎么找? 1643547
邀请新用户注册赠送积分活动 781324
科研通“疑难数据库(出版商)”最低求助积分说明 749369