磁制冷
二十面体对称
材料科学
静水压力
热力学
制冷
凝聚态物理
流体静力平衡
熵(时间箭头)
相变
衍射
化学
结晶学
物理
磁场
磁化
光学
量子力学
作者
Jiazheng Hao,Fengxia Hu,Jiantao Wang,Fang Shen,Zibing Yu,Haihua Zhou,Hui Wu,Q. Huang,Kaiming Qiao,Jing Wang,Jun He,Lunhua He,J. R. Sun,Baogen Shen
标识
DOI:10.1021/acs.chemmater.9b03915
摘要
Solid-state refrigeration based on caloric effect has been regarded as an attractive alternative to the conventional gas compression technique. Boosting the caloric effect of a system to its optimum is a long-term pursuit. Here, we report enhanced magnetocaloric effect (MCE) and barocaloric effect (BCE) by hydrostatic pressure in La(Fe0.92Co0.08)11.9Si1.1 with a NaZn13-type structure. The entropy change ΔSMCE is almost doubled under 11.31 kbar, while the ΔSBCE is more than tripled under 9 kbar. To disclose the essence from the atomic level, neutron powder diffraction studies were performed. The results revealed that hydrostatic pressure sharpens the magnetoelastic transition and enlarges the volume change, ΔV/V, during the transition through altering the intra-icosahedral Fe–Fe bonds rather than the inter-icosahedral distances in the NaZn13-type structure. First-principles calculations were performed, which offers a theoretical support for the enlarged caloric effect related to the evolution of phase transition nature. Moreover, the enhanced lattice entropy change was calculated by Debye approximation, and a reliable way to evaluate BCE is demonstrated under a high pressure that DSC cannot reach. The present study proves that remarkable caloric effect enhancement can be achieved through tackling specific atomic environments by physical pressure, which may also be used to tailor other pressure-related effects, such as controllable negative thermal expansion.
科研通智能强力驱动
Strongly Powered by AbleSci AI