亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Large Enhancement of Magnetocaloric and Barocaloric Effects by Hydrostatic Pressure in La(Fe0.92Co0.08)11.9Si1.1 with a NaZn13-Type Structure

磁制冷 二十面体对称 材料科学 静水压力 热力学 制冷 凝聚态物理 流体静力平衡 熵(时间箭头) 相变 衍射 化学 结晶学 物理 磁场 磁化 量子力学 光学
作者
Jiazheng Hao,Fengxia Hu,Jiantao Wang,Fang Shen,Zibing Yu,Haihua Zhou,Hui Wu,Q. Huang,Kaiming Qiao,Jing Wang,Jun He,Lunhua He,J. R. Sun,Baogen Shen
出处
期刊:Chemistry of Materials [American Chemical Society]
卷期号:32 (5): 1807-1818 被引量:21
标识
DOI:10.1021/acs.chemmater.9b03915
摘要

Solid-state refrigeration based on caloric effect has been regarded as an attractive alternative to the conventional gas compression technique. Boosting the caloric effect of a system to its optimum is a long-term pursuit. Here, we report enhanced magnetocaloric effect (MCE) and barocaloric effect (BCE) by hydrostatic pressure in La(Fe0.92Co0.08)11.9Si1.1 with a NaZn13-type structure. The entropy change ΔSMCE is almost doubled under 11.31 kbar, while the ΔSBCE is more than tripled under 9 kbar. To disclose the essence from the atomic level, neutron powder diffraction studies were performed. The results revealed that hydrostatic pressure sharpens the magnetoelastic transition and enlarges the volume change, ΔV/V, during the transition through altering the intra-icosahedral Fe–Fe bonds rather than the inter-icosahedral distances in the NaZn13-type structure. First-principles calculations were performed, which offers a theoretical support for the enlarged caloric effect related to the evolution of phase transition nature. Moreover, the enhanced lattice entropy change was calculated by Debye approximation, and a reliable way to evaluate BCE is demonstrated under a high pressure that DSC cannot reach. The present study proves that remarkable caloric effect enhancement can be achieved through tackling specific atomic environments by physical pressure, which may also be used to tailor other pressure-related effects, such as controllable negative thermal expansion.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
sxmt123456789完成签到,获得积分10
15秒前
赘婿应助科研通管家采纳,获得10
40秒前
王小雨完成签到 ,获得积分10
49秒前
ssu90完成签到 ,获得积分10
1分钟前
愉快谷芹完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
陳.发布了新的文献求助10
1分钟前
陳.发布了新的文献求助10
1分钟前
大帅哥完成签到 ,获得积分10
1分钟前
2分钟前
jjiiii发布了新的文献求助10
2分钟前
2分钟前
美满尔蓝完成签到,获得积分10
2分钟前
zz完成签到,获得积分10
2分钟前
3分钟前
谦让山槐完成签到 ,获得积分10
3分钟前
Criminology34应助ceeray23采纳,获得20
3分钟前
顾矜应助越听初采纳,获得10
3分钟前
4分钟前
ceeray23发布了新的文献求助20
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
哈哈关注了科研通微信公众号
5分钟前
缥缈的觅风完成签到 ,获得积分10
5分钟前
boom完成签到 ,获得积分10
5分钟前
Zcl完成签到 ,获得积分10
6分钟前
Unicorn完成签到,获得积分10
6分钟前
哈哈发布了新的文献求助10
6分钟前
卡卡应助科研通管家采纳,获得10
6分钟前
Naming发布了新的文献求助10
7分钟前
7分钟前
深情安青应助Marciu33采纳,获得10
7分钟前
祖宛凝发布了新的文献求助10
7分钟前
renhuizhi发布了新的文献求助10
7分钟前
7分钟前
wanci应助Naming采纳,获得10
7分钟前
Forever完成签到 ,获得积分10
7分钟前
祖宛凝完成签到,获得积分10
7分钟前
木康薛完成签到,获得积分10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5634843
求助须知:如何正确求助?哪些是违规求助? 4733993
关于积分的说明 14989356
捐赠科研通 4792596
什么是DOI,文献DOI怎么找? 2559701
邀请新用户注册赠送积分活动 1520021
关于科研通互助平台的介绍 1480086