化学
细菌
抗生素
抗生素耐药性
光谱学
微生物学
生物化学
遗传学
量子力学
生物
物理
作者
Kamila Kochan,Cara Nethercott,Jamileh Taghavimoghaddam,Z.J. Richardson,Elizabeth Lai,Simon Crawford,Anton Y. Peleg,Bayden R. Wood,Philip Heraud
标识
DOI:10.1021/acs.analchem.0c00474
摘要
Here, we applied vibrational spectroscopy to investigate the drug response following incubation of S. aureus with oxacillin. The main focus of this work was to identify the chemical changes caused by oxacillin over time and to determine the feasibility of the spectroscopic approach to detect antimicrobial resistance. The oxacillin-induced changes in the chemical composition of susceptible bacteria, preceding (and leading to) the inhibition of growth, included an increase in the relative content of nucleic acids, alteration in the α-helical/β-sheet protein ratio, structural changes in carbohydrates (observed via changes in the band at 1035 cm-1), and significant thickening of the cell wall. These observations enabled a dose-dependent discrimination between susceptible bacteria incubated with and without oxacillin after 120 min. In methicillin resistant strains, no spectral differences were observed between cells, regardless of drug exposure. These results pave the way for a new, rapid spectroscopic approach to detect drug resistance in pathogens, based on their early positive/negative drug response.
科研通智能强力驱动
Strongly Powered by AbleSci AI