作者
Joris Nas,Jos Thannhauser,Priya Vart,Robert‐Jan van Geuns,Hella Muijsers,Jan‐Quinten Mol,Goaris W A Aarts,Lara S. F. Konijnenberg,D.H. Frank Gommans,Sandra G. A. M. Ahoud-Schoenmakers,Jacqueline L Vos,Niels van Royen,Judith L. Bonnes,Marc A. Brouwer
摘要
Importance
Bystander cardiopulmonary resuscitation (CPR) is crucial for survival after cardiac arrest but not performed in most cases. New, low-cost, and easily accessible training methods, such as virtual reality (VR), may reach broader target populations, but data on achieved CPR skills are lacking. Objective
To compare CPR quality between VR and face-to-face CPR training. Design, Setting, and Participants
Randomized noninferiority trial with a prospective randomized open blinded end point design. Participants were adult attendees from the science section of the Lowlands Music Festival (August 16 to 18, 2019) in the Netherlands. Analysis began September 2019. Interventions
Two standardized 20-minute protocols on CPR and automated external defibrillator use: instructor-led face-to-face training or VR training using a smartphone app endorsed by the Resuscitation Council (United Kingdom). Main Outcomes and Measures
During a standardized CPR scenario following the training, we assessed the primary outcome CPR quality, measured as chest compression depth and rate using CPR manikins. Overall CPR performance was assessed by examiners, blinded for study groups, using a European Resuscitation Council–endorsed checklist (maximum score, 13). Additional secondary outcomes were chest compression fraction, proportions of participants with mean depth (50 mm-60 mm) or rate (100 min−1-120 min−1) within guideline ranges, and proportions compressions with full release. Results
A total of 381 participants were randomized: 216 women (57%); median (interquartile range [IQR]) age, 26 (22-31) years. The VR app (n = 190 [49.9%]) was inferior to face-to-face training (n = 191 [50.1%]) for chest compression depth (mean [SD], VR: 49 [10] mm vs face to face: 57 [5] mm; mean [95% CI] difference, −8 [−9 to −6] mm), and noninferior for chest compression rate (mean [SD]: VR: 114 [12] min−1vs face to face: 109 [12] min−1; mean [95% CI] difference, 6 [3 to 8] min−1). The VR group had lower overall CPR performance scores (median [IQR], 10 [8-12] vs 12 [12-13];P < .001). Chest compression fraction (median [IQR], 61% [52%-66%] vs 67% [62%-71%];P < .001) and proportions of participants fulfilling depth (51% [n = 89] vs 75% [n = 133],P < .001) and rate (50% [n = 87] vs 63% [n = 111],P = .01) requirements were also lower in the VR group. The proportion of compressions with full release was higher in the VR group (median [IQR], 98% [59%-100%] vs 88% [55%-99%];P = .002). Conclusions and Relevance
In this randomized noninferiority trial, VR training resulted in comparable chest compression rate but inferior compression depth compared with face-to-face training. Given the potential of VR training to reach a larger target population, further development is needed to achieve the compression depth and overall CPR skills acquired by face-to-face training. Trial Registration
ClinicalTrials.gov identifier:NCT04013633