量子点
材料科学
胶体
纳米技术
化学
化学工程
物理化学
工程类
作者
James Z. Fan,Maral Vafaie,Koen Bertens,Mykhailo Sytnyk,João M. Pina,Laxmi Kishore Sagar,Olivier Ouellette,Andrew H. Proppe,Armin Sedighian Rasouli,Yajun Gao,Se‐Woong Baek,Bin Chen,Frédéric Laquai,Sjoerd Hoogland,F. Pelayo Garcı́a de Arquer,Wolfgang Heiß,Edward H. Sargent
出处
期刊:Nano Letters
[American Chemical Society]
日期:2020-06-16
卷期号:20 (7): 5284-5291
被引量:50
标识
DOI:10.1021/acs.nanolett.0c01614
摘要
Shortwave infrared colloidal quantum dots (SWIR-CQDs) are semiconductors capable of harvesting across the AM1.5G solar spectrum. Today's SWIR-CQD solar cells rely on spin-coating; however, these films exhibit cracking once thickness exceeds ∼500 nm. We posited that a blade-coating strategy could enable thick QD films. We developed a ligand exchange with an additional resolvation step that enabled the dispersion of SWIR-CQDs. We then engineered a quaternary ink that combined high-viscosity solvents with short QD stabilizing ligands. This ink, blade-coated over a mild heating bed, formed micron-thick SWIR-CQD films. These SWIR-CQD solar cells achieved short-circuit current densities (Jsc) that reach 39 mA cm–2, corresponding to the harvest of 60% of total photons incident under AM1.5G illumination. External quantum efficiency measurements reveal both the first exciton peak and the closest Fabry–Perot resonance peak reaching approximately 80%—this is the highest unbiased EQE reported beyond 1400 nm in a solution-processed semiconductor.
科研通智能强力驱动
Strongly Powered by AbleSci AI