已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine learning-assisted enzyme engineering

定向进化 热稳定性 定向分子进化 序列空间 生化工程 合理设计 蛋白质工程 人工智能 蛋白质设计 计算机科学 机器学习 生物化学 工程类 纳米技术 蛋白质结构 数学 化学 材料科学 巴拿赫空间 突变体 基因 纯数学
作者
Niklas E. Siedhoff,Ulrich Schwaneberg,Mehdi D. Davari
出处
期刊:Methods in Enzymology 卷期号:: 281-315 被引量:80
标识
DOI:10.1016/bs.mie.2020.05.005
摘要

Directed evolution and rational design are powerful strategies in protein engineering to tailor enzyme properties to meet the demands in academia and industry. Traditional approaches for enzyme engineering and directed evolution are often experimentally driven, in particular when the protein structure–function relationship is not available. Though they have been successfully applied to engineer many enzymes, these methods are still facing significant challenges due to the tremendous size of the protein sequence space and the combinatorial problem. It can be ascertained that current experimental techniques and computational techniques might never be able to sample through the entire protein sequence space and benefit from nature's full potential for the generation of better enzymes. With advancements in next generation sequencing, high throughput screening methods, the growth of protein databases and artificial intelligence, especially machine learning (ML), data-driven enzyme engineering is emerging as a promising solution to these challenges. To date, ML-assisted approaches have efficiently and accurately determined the quantitative structure-property/activity relationship for the prediction of diverse enzyme properties. In addition, enzyme engineering can be accelerated much faster than ever through the combination of experimental library generation and ML-based prediction. In this chapter, we review the recent progresses in ML-assisted enzyme engineering and highlight several successful examples (e.g., to enhance activity, enantioselectivity, or thermostability). Herein we explain enzyme engineering strategies that combine random or (semi-)rational approaches with ML methods and allow an effective reengineering of enzymes to improve targeted properties. We further discuss the main challenges to solve in order to realize the full potential of ML methods in enzyme engineering. Finally, we describe the current limitations of ML-assisted enzyme engineering, and our perspective on future opportunities in this growing field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
CipherSage应助海洋哥哥采纳,获得10
3秒前
4秒前
5秒前
小成发布了新的文献求助10
5秒前
LI完成签到,获得积分10
6秒前
宁老大完成签到,获得积分10
6秒前
liang发布了新的文献求助10
6秒前
7秒前
W查查发布了新的文献求助10
9秒前
KTaoL发布了新的文献求助10
9秒前
陈陈完成签到 ,获得积分10
9秒前
adkdad完成签到 ,获得积分10
16秒前
漂亮忆南完成签到 ,获得积分10
17秒前
www完成签到,获得积分10
17秒前
向日葵发布了新的文献求助10
20秒前
許1111完成签到 ,获得积分10
22秒前
邓生完成签到 ,获得积分10
24秒前
虚拟的秋寒完成签到,获得积分20
25秒前
liekkas完成签到,获得积分10
25秒前
27秒前
xiong完成签到 ,获得积分10
27秒前
Jinnianlun完成签到,获得积分10
30秒前
百里一一发布了新的文献求助10
31秒前
SciGPT应助yamo采纳,获得10
33秒前
科研通AI2S应助Chnp采纳,获得30
33秒前
34秒前
刘琪琪完成签到 ,获得积分10
37秒前
38秒前
www关注了科研通微信公众号
38秒前
夏紊完成签到 ,获得积分10
41秒前
42秒前
赘婿应助孤独靖柏采纳,获得10
42秒前
夏来应助耍酷的小海豚采纳,获得20
44秒前
QQ完成签到,获得积分10
44秒前
Mocca发布了新的文献求助10
46秒前
48秒前
NMZN发布了新的文献求助10
50秒前
科研通AI2S应助百里一一采纳,获得10
50秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129906
求助须知:如何正确求助?哪些是违规求助? 2780653
关于积分的说明 7749626
捐赠科研通 2435992
什么是DOI,文献DOI怎么找? 1294442
科研通“疑难数据库(出版商)”最低求助积分说明 623673
版权声明 600570