亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An interpretable model for short term traffic flow prediction

计算机科学 期限(时间) 流量(计算机网络) 自回归模型 光学(聚焦) 人工神经网络 人工智能 因果关系(物理学) 深度学习 机器学习 数据挖掘 计量经济学 数学 计算机安全 物理 光学 量子力学
作者
Wei Wang,Hanyu Zhang,Tong Li,Jianhua Guo,Wei Huang,Yun Wei,Jinde Cao
出处
期刊:Mathematics and Computers in Simulation [Elsevier]
卷期号:171: 264-278 被引量:26
标识
DOI:10.1016/j.matcom.2019.12.013
摘要

Predicting short term traffic flow to improve traffic control is a research problem attracting increased attention over the past 30 years. With increasing number of traffic data acquisition equipments coming into usage, it provides an opportunity to use deep neural network (DNN) to predict short-term traffic flow. Behind its considerable success, the DNN is weighed down by some problems, and here we focus on: 1. how to justify the number of input nodes employed by DNN; 2. how to explain the causality between the historical spatiotemporal information and the future traffic condition. In this paper, we propose a deep polynomial neural network combined with a seasonal autoregressive integrated moving average model. The new model has superior predicting accuracy as well as enhanced clarity on the spatiotemporal relationship in its deep architecture. Experimental results indicate that the proposed model has better explanation power and higher accuracy compared with the LSTM based model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wingmay完成签到,获得积分10
1秒前
nchudddd发布了新的文献求助20
2秒前
wingmay发布了新的文献求助10
8秒前
8秒前
朱朱子完成签到 ,获得积分10
17秒前
ceeray23应助科研通管家采纳,获得10
33秒前
ceeray23应助科研通管家采纳,获得10
33秒前
ceeray23应助科研通管家采纳,获得10
33秒前
34秒前
天天快乐应助饭团不吃鱼采纳,获得10
39秒前
48秒前
52秒前
1分钟前
CodeCraft应助Ss采纳,获得10
1分钟前
1分钟前
1分钟前
落寞惮发布了新的文献求助10
1分钟前
1分钟前
Wone3完成签到 ,获得积分10
1分钟前
LZY完成签到,获得积分10
1分钟前
斯文的访烟完成签到,获得积分10
1分钟前
1分钟前
123发布了新的文献求助10
1分钟前
1分钟前
2分钟前
123完成签到,获得积分10
2分钟前
2分钟前
张安然发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
Akim应助熊二采纳,获得10
2分钟前
研研研究不出完成签到 ,获得积分10
2分钟前
xixun完成签到 ,获得积分20
2分钟前
落寞惮完成签到,获得积分10
2分钟前
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
2分钟前
张安然完成签到,获得积分10
2分钟前
熊二发布了新的文献求助10
2分钟前
Jasper应助安详的面包采纳,获得10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650903
求助须知:如何正确求助?哪些是违规求助? 4782013
关于积分的说明 15052718
捐赠科研通 4809666
什么是DOI,文献DOI怎么找? 2572478
邀请新用户注册赠送积分活动 1528514
关于科研通互助平台的介绍 1487478