化学
热解
催化作用
相(物质)
吸收(声学)
结晶学
碳纤维
吸收光谱法
Atom(片上系统)
兴奋剂
无机化学
有机化学
材料科学
复合材料
嵌入式系统
物理
复合数
量子力学
光电子学
计算机科学
声学
作者
Jingkun Li,Jiao Li,Evan C. Wegener,Lynne LaRochelle Richard,Ershuai Liu,Andrea Zitolo,Moulay Tahar Sougrati,Sanjeev Mukerjee,Zipeng Zhao,Yu Huang,Fan Yang,Sichen Zhong,Hui Xu,A. Jeremy Kropf,Frédéric Jaouen,Deborah J. Myers,Qingying Jia
摘要
Pyrolysis is indispensable for synthesizing highly active Fe-N-C catalysts for the oxygen reduction reaction (ORR) in acid, but how Fe, N, and C precursors transform to ORR-active sites during pyrolysis remains unclear. This knowledge gap obscures the connections between the input precursors and the output products, clouding the pathway toward Fe-N-C catalyst improvement. Herein, we unravel the evolution pathway of precursors to ORR-active catalyst comprised exclusively of single-atom Fe1(II)-N4 sites via in-temperature X-ray absorption spectroscopy. The Fe precursor transforms to Fe oxides below 300 °C and then to tetrahedral Fe1(II)-O4 via a crystal-to-melt-like transformation below 600 °C. The Fe1(II)-O4 releases a single Fe atom that diffuses into the N-doped carbon defect forming Fe1(II)-N4 above 600 °C. This vapor-phase single Fe atom transport mechanism is verified by synthesizing Fe1(II)-N4 sites via "noncontact pyrolysis" wherein the Fe precursor is not in physical contact with the N and C precursors during pyrolysis.
科研通智能强力驱动
Strongly Powered by AbleSci AI