Multi-attribute decision making: An innovative method based on the dynamic credibility of experts

加权 可靠性 正确性 排名(信息检索) 计算机科学 数据挖掘 决策矩阵 层次分析法 数学 人工智能 运筹学 算法 医学 政治学 法学 放射科
作者
Zhigang Zhang,Xiao Hu,Zhao-Ting Liu,Lian Zhao
出处
期刊:Applied Mathematics and Computation [Elsevier]
卷期号:393: 125816-125816 被引量:10
标识
DOI:10.1016/j.amc.2020.125816
摘要

Multi-attribute decision making has become a topic of interest for scholars because it can comprehensively and effectively be used to make decisions in situations in which there are multiple homogeneous options. Attribute weighting is an important step and has a significant impact on decision-making, and the subjective weighting method is commonly used in reality. However, as experts have different knowledge, experiences, preferences and so on, the weights of attributes given by experts are subjective. So expert credibility affects the final weights, and the correctness of the weights calculated in this case cannot be guaranteed. Therefore, the dynamic expert credibility model (DECM) is proposed. First, based on the decision matrix and the weight evaluation matrix, the method for calculating distance-based expert credibility calculates the distance between expert evaluations via the score deviation and ranking deviation. Second, considering the differences in the weight evaluation matrix caused by changes in the individual background of the experts, the expert background change process (EBCP) is proposed. Third, the dynamic value of credibility before and after the EBCP can be calculated. To prove the validity of the model, a test method is proposed from the perspective of data envelopment analysis. Finally, evaluations on industrial economic benefits of 16 provinces or municipalities in China are conducted to illustrate the applicability of the proposed model in practice. Using the test, DECM effectively eliminates the influence of the weight calculation due to expert credibility. After the EBCP, the target value of the DECM reaches 6.0989 and the validity of attribute weights is improved by 2.30%. Compared with the traditional weight determination method, the decision-making result under the DECM is consistent.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助纯真的凌兰采纳,获得30
2秒前
蝈蝈发布了新的文献求助10
4秒前
4秒前
5秒前
6秒前
蓝天应助早安采纳,获得30
6秒前
Lucas应助Muncy采纳,获得10
8秒前
田様应助FYX采纳,获得10
9秒前
fuchao发布了新的文献求助10
10秒前
考拉发布了新的文献求助30
10秒前
科研欢欢鱼完成签到,获得积分10
11秒前
活力怀绿完成签到,获得积分10
13秒前
田様应助无事小神仙采纳,获得10
14秒前
18秒前
丰盛的煎饼完成签到,获得积分0
18秒前
不难不难完成签到,获得积分10
20秒前
共享精神应助荔枝采纳,获得10
22秒前
yugy发布了新的文献求助10
23秒前
24秒前
无极微光应助古月采纳,获得20
25秒前
25秒前
材小料发布了新的文献求助10
29秒前
ChenXY完成签到,获得积分10
29秒前
halo发布了新的文献求助10
30秒前
lst完成签到,获得积分10
31秒前
科研通AI2S应助kangk采纳,获得10
32秒前
浮游应助空明流毓采纳,获得10
34秒前
35秒前
YUESIYA发布了新的文献求助30
36秒前
寒冷的奇异果完成签到,获得积分10
36秒前
spc68应助早安采纳,获得10
40秒前
复成完成签到 ,获得积分10
42秒前
光亮妙之完成签到,获得积分10
42秒前
dd发布了新的文献求助30
42秒前
整齐半青完成签到 ,获得积分10
42秒前
你好完成签到,获得积分10
43秒前
chenanqi完成签到,获得积分10
43秒前
44秒前
yfn完成签到,获得积分10
48秒前
49秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563713
求助须知:如何正确求助?哪些是违规求助? 4648650
关于积分的说明 14685821
捐赠科研通 4590597
什么是DOI,文献DOI怎么找? 2518657
邀请新用户注册赠送积分活动 1491243
关于科研通互助平台的介绍 1462521