Combinatorial Benders Decomposition for the Two-Dimensional Bin Packing Problem

装箱问题 包装问题 固定填料 集合(抽象数据类型) 箱子 一般化 数学 启发式 启发式 本德分解 水准点(测量) 数学优化 跳跃式监视 算法 组合优化 分解 预处理器 分支和切割 计算机科学 容器(类型理论) 整数规划 人工智能 数学分析 工程类 生物 机械工程 生态学 程序设计语言 地理 大地测量学
作者
Jean‐François Côté,Mohamed Haouari,Manuel Iori
出处
期刊:Informs Journal on Computing 卷期号:33 (3): 963-978 被引量:23
标识
DOI:10.1287/ijoc.2020.1014
摘要

The two-dimensional bin packing problem calls for packing a set of rectangular items into a minimal set of larger rectangular bins. Items must be packed with their edges parallel to the borders of the bins, cannot be rotated, and cannot overlap among them. The problem is of interest because it models many real-world applications, including production, warehouse management, and transportation. It is, unfortunately, very difficult, and instances with just 40 items are unsolved to proven optimality, despite many attempts, since the 1990s. In this paper, we solve the problem with a combinatorial Benders decomposition that is based on a simple model in which the two-dimensional items and bins are just represented by their areas, and infeasible packings are imposed by means of exponentially many no-good cuts. The basic decomposition scheme is quite naive, but we enrich it with a number of preprocessing techniques, valid inequalities, lower bounding methods, and enhanced algorithms to produce the strongest possible cuts. The resulting algorithm behaved very well on the benchmark sets of instances, improving on average on previous algorithms from the literature and solving for the first time a number of open instances. Summary of Contribution: We address the two-dimensional bin packing problem (2D-BPP), which calls for packing a set of rectangular items into a minimal set of larger rectangular bins. The 2D-BPP is a very difficult generalization of the standard one-dimensional bin packing problem, and it has been widely studied in the past because it models many real-world applications, including production, warehouse management, and transportation. We solve the 2D-BPP with a combinatorial Benders decomposition that is based on a model in which the two-dimensional items and bins are represented by their areas, and infeasible packings are imposed by means of exponentially many no-good cuts. The basic decomposition scheme is quite naive, but it is enriched with a number of preprocessing techniques, valid inequalities, lower bounding methods, and enhanced algorithms to produce the strongest possible cuts. The algorithm we developed has been extensively tested on the most well-known benchmark set from the literature, which contains 500 instances. It behaved very well, improving on average upon previous algorithms, and solving for the first time a number of open instances. We analyzed in detail several configurations before obtaining the best one and discussed several insights from this analysis in the manuscript.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
bkagyin应助MLi采纳,获得10
1秒前
坚定岂愈发布了新的文献求助10
2秒前
樊念烟完成签到,获得积分10
3秒前
allen完成签到,获得积分10
4秒前
zhaxiao完成签到,获得积分10
4秒前
5秒前
昵称发布了新的文献求助10
6秒前
curtisness应助花见月开采纳,获得10
6秒前
7秒前
zhaxiao发布了新的文献求助10
8秒前
嵩山小麻雀完成签到,获得积分10
8秒前
wenwen完成签到,获得积分20
8秒前
查理完成签到,获得积分10
9秒前
zzzzzz应助sssss采纳,获得10
9秒前
10秒前
甜甜乘云发布了新的文献求助10
10秒前
10秒前
Nanki完成签到,获得积分10
10秒前
13秒前
马铃薯发布了新的文献求助10
13秒前
Cassie发布了新的文献求助10
15秒前
长风完成签到,获得积分10
15秒前
酷酷钢笔完成签到,获得积分10
15秒前
16秒前
17秒前
冬青完成签到,获得积分10
17秒前
忧郁一江发布了新的文献求助10
18秒前
昵称完成签到,获得积分10
19秒前
天天快乐应助sssss采纳,获得10
19秒前
马铃薯完成签到,获得积分10
19秒前
坚定岂愈发布了新的文献求助10
19秒前
20秒前
20秒前
20秒前
20秒前
21秒前
21秒前
21秒前
一只科研pig完成签到 ,获得积分10
22秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148222
求助须知:如何正确求助?哪些是违规求助? 2799394
关于积分的说明 7834549
捐赠科研通 2456604
什么是DOI,文献DOI怎么找? 1307321
科研通“疑难数据库(出版商)”最低求助积分说明 628124
版权声明 601655