Convolutional and recurrent neural networks for the detection of valvular heart diseases in phonocardiogram recordings

心音图 计算机科学 卷积神经网络 医学 模式识别(心理学) 心脏病学 深度学习 人工智能 二尖瓣反流 狭窄 内科学 人工神经网络
作者
Mohanad Alkhodari,Luay Fraiwan
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:200: 105940-105940 被引量:121
标识
DOI:10.1016/j.cmpb.2021.105940
摘要

Valvular heart diseases (VHD) are one of the major causes of cardiovascular diseases that are having high mortality rates worldwide. The early diagnosis of VHD prevents the development of cardiac diseases and allows for optimum medication. Despite of the ability of current gold standards in identifying VHD, they still lack the required accuracy and thus, several cases go misdiagnosed. In this vein, a study is conducted herein to investigate the efficiency of deep learning models in identifying VHD through phonocardiography (PCG) recordings. PCG heart sounds were obtained from an open-access data-set representing normal heart sounds along with four major VHD; namely aortic stenosis (AS), mitral stenosis (MS), mitral regurgitation (MR), and mitral valve prolapse (MVP). A total of 1,000 patients were involved in the study with 200 recordings for each class. All recordings were initially trimmed to have 9,600 samples ensuring their coverage of at least 1 cardiac cycle. In addition, they were pre-processed by applying maximal overlap discrete wavelet transform (MODWT) smoothing algorithm and z-score normalization. The neural network architecture was designed to reduce the complexity often found in literature and consisted of a combination of convolutional neural networks (CNN) and recurrent neural networks (RNN) based on Bi-directional long short-term memory (BiLSTM). The model was trained and tested following a k-fold cross-validation scheme of 10-folds utilizing the CNN-BiLSTM network as well as the CNN and BiLSTM, individually. The highest performance was achieved using the CNN-BiLSTM network with an overall Cohen’s kappa, accuracy, sensitivity, and specificity of 97.87%, 99.32%, 98.30%, and 99.58%, respectively. In addition, the model had an average area under the curve (AUC) of 0.998. Furthermore, the performance of the model was assessed on the PhysioNet/Computing in Cardiology 2016 challenge data-set and reached an overall accuracy of 87.31% with an AUC of 0.900. This study paves the way towards implementing deep learning models in VHD identification under clinical settings to assist clinicians in decision making and prevent many cases from cardiac abnormalities development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mrmrer发布了新的文献求助10
刚刚
2秒前
MUSTer一一完成签到 ,获得积分10
2秒前
通通通完成签到,获得积分10
2秒前
2秒前
务实的菓完成签到 ,获得积分10
3秒前
似水流年完成签到,获得积分10
3秒前
An慧完成签到,获得积分10
3秒前
Hello应助阿金采纳,获得10
3秒前
3秒前
3秒前
5秒前
顾夏包完成签到,获得积分10
5秒前
小土豆发布了新的文献求助50
6秒前
科研通AI5应助跑在颖采纳,获得10
6秒前
追寻代真发布了新的文献求助10
7秒前
mrmrer完成签到,获得积分20
7秒前
7秒前
7秒前
毛慢慢发布了新的文献求助10
8秒前
8秒前
今天不学习明天变垃圾完成签到,获得积分10
8秒前
9秒前
9秒前
布布完成签到,获得积分10
10秒前
一独白发布了新的文献求助10
10秒前
周周完成签到 ,获得积分10
10秒前
淡然完成签到,获得积分10
11秒前
明理小土豆完成签到,获得积分10
11秒前
刘国建郭菱香完成签到,获得积分10
11秒前
嘤嘤嘤完成签到,获得积分10
11秒前
九川应助粱自中采纳,获得10
11秒前
无辜之卉完成签到,获得积分10
12秒前
无花果应助Island采纳,获得10
12秒前
12秒前
SHDeathlock发布了新的文献求助200
13秒前
Owen应助醒醒采纳,获得10
13秒前
无心的代桃完成签到,获得积分10
14秒前
追寻代真完成签到,获得积分10
14秒前
晓兴兴完成签到,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762