Convolutional and recurrent neural networks for the detection of valvular heart diseases in phonocardiogram recordings

心音图 计算机科学 卷积神经网络 医学 模式识别(心理学) 心脏病学 深度学习 人工智能 二尖瓣反流 狭窄 内科学 人工神经网络
作者
Mohanad Alkhodari,Luay Fraiwan
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:200: 105940-105940 被引量:162
标识
DOI:10.1016/j.cmpb.2021.105940
摘要

Valvular heart diseases (VHD) are one of the major causes of cardiovascular diseases that are having high mortality rates worldwide. The early diagnosis of VHD prevents the development of cardiac diseases and allows for optimum medication. Despite of the ability of current gold standards in identifying VHD, they still lack the required accuracy and thus, several cases go misdiagnosed. In this vein, a study is conducted herein to investigate the efficiency of deep learning models in identifying VHD through phonocardiography (PCG) recordings. PCG heart sounds were obtained from an open-access data-set representing normal heart sounds along with four major VHD; namely aortic stenosis (AS), mitral stenosis (MS), mitral regurgitation (MR), and mitral valve prolapse (MVP). A total of 1,000 patients were involved in the study with 200 recordings for each class. All recordings were initially trimmed to have 9,600 samples ensuring their coverage of at least 1 cardiac cycle. In addition, they were pre-processed by applying maximal overlap discrete wavelet transform (MODWT) smoothing algorithm and z-score normalization. The neural network architecture was designed to reduce the complexity often found in literature and consisted of a combination of convolutional neural networks (CNN) and recurrent neural networks (RNN) based on Bi-directional long short-term memory (BiLSTM). The model was trained and tested following a k-fold cross-validation scheme of 10-folds utilizing the CNN-BiLSTM network as well as the CNN and BiLSTM, individually. The highest performance was achieved using the CNN-BiLSTM network with an overall Cohen’s kappa, accuracy, sensitivity, and specificity of 97.87%, 99.32%, 98.30%, and 99.58%, respectively. In addition, the model had an average area under the curve (AUC) of 0.998. Furthermore, the performance of the model was assessed on the PhysioNet/Computing in Cardiology 2016 challenge data-set and reached an overall accuracy of 87.31% with an AUC of 0.900. This study paves the way towards implementing deep learning models in VHD identification under clinical settings to assist clinicians in decision making and prevent many cases from cardiac abnormalities development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
长夜变清早完成签到,获得积分10
刚刚
天天快乐应助呆萌晓丝采纳,获得10
1秒前
无足鸟完成签到,获得积分10
3秒前
zhangzhang发布了新的文献求助10
3秒前
斯文败类应助王能能采纳,获得10
4秒前
5秒前
暗夜轰炸机完成签到,获得积分10
6秒前
6秒前
6秒前
Dr Niu应助zmdlmd采纳,获得10
6秒前
9秒前
文静梦芝发布了新的文献求助10
10秒前
11秒前
12秒前
所所应助研友_n0kYwL采纳,获得10
12秒前
花莫凋零发布了新的文献求助10
13秒前
14秒前
14秒前
健忘的灵槐完成签到,获得积分10
14秒前
alex完成签到,获得积分10
15秒前
喜悦的鬼神完成签到 ,获得积分10
16秒前
badyoungboy发布了新的文献求助10
17秒前
寻光之径完成签到 ,获得积分10
18秒前
哭泣的紫槐完成签到,获得积分20
18秒前
寻光之径关注了科研通微信公众号
20秒前
21秒前
23秒前
和谐冬亦发布了新的文献求助10
24秒前
谦让小松鼠完成签到 ,获得积分10
25秒前
绺妙发布了新的文献求助10
26秒前
无花果应助小潘同学采纳,获得10
27秒前
27秒前
28秒前
缥缈盼旋发布了新的文献求助10
28秒前
Ava应助mx31采纳,获得10
28秒前
庆幸发布了新的文献求助10
29秒前
lulu发布了新的文献求助10
29秒前
陶醉的念之完成签到,获得积分10
30秒前
31秒前
王能能发布了新的文献求助10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
Research Handbook on Law and Political Economy Second Edition 398
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4557542
求助须知:如何正确求助?哪些是违规求助? 3984906
关于积分的说明 12337514
捐赠科研通 3655104
什么是DOI,文献DOI怎么找? 2013567
邀请新用户注册赠送积分活动 1048515
科研通“疑难数据库(出版商)”最低求助积分说明 936911