Convolutional and recurrent neural networks for the detection of valvular heart diseases in phonocardiogram recordings

心音图 计算机科学 卷积神经网络 医学 模式识别(心理学) 心脏病学 深度学习 人工智能 二尖瓣反流 狭窄 内科学 人工神经网络
作者
Mohanad Alkhodari,Luay Fraiwan
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:200: 105940-105940 被引量:162
标识
DOI:10.1016/j.cmpb.2021.105940
摘要

Valvular heart diseases (VHD) are one of the major causes of cardiovascular diseases that are having high mortality rates worldwide. The early diagnosis of VHD prevents the development of cardiac diseases and allows for optimum medication. Despite of the ability of current gold standards in identifying VHD, they still lack the required accuracy and thus, several cases go misdiagnosed. In this vein, a study is conducted herein to investigate the efficiency of deep learning models in identifying VHD through phonocardiography (PCG) recordings. PCG heart sounds were obtained from an open-access data-set representing normal heart sounds along with four major VHD; namely aortic stenosis (AS), mitral stenosis (MS), mitral regurgitation (MR), and mitral valve prolapse (MVP). A total of 1,000 patients were involved in the study with 200 recordings for each class. All recordings were initially trimmed to have 9,600 samples ensuring their coverage of at least 1 cardiac cycle. In addition, they were pre-processed by applying maximal overlap discrete wavelet transform (MODWT) smoothing algorithm and z-score normalization. The neural network architecture was designed to reduce the complexity often found in literature and consisted of a combination of convolutional neural networks (CNN) and recurrent neural networks (RNN) based on Bi-directional long short-term memory (BiLSTM). The model was trained and tested following a k-fold cross-validation scheme of 10-folds utilizing the CNN-BiLSTM network as well as the CNN and BiLSTM, individually. The highest performance was achieved using the CNN-BiLSTM network with an overall Cohen’s kappa, accuracy, sensitivity, and specificity of 97.87%, 99.32%, 98.30%, and 99.58%, respectively. In addition, the model had an average area under the curve (AUC) of 0.998. Furthermore, the performance of the model was assessed on the PhysioNet/Computing in Cardiology 2016 challenge data-set and reached an overall accuracy of 87.31% with an AUC of 0.900. This study paves the way towards implementing deep learning models in VHD identification under clinical settings to assist clinicians in decision making and prevent many cases from cardiac abnormalities development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
冰冰子完成签到 ,获得积分10
1秒前
1秒前
2秒前
2秒前
wzx发布了新的文献求助10
2秒前
2秒前
VDC应助zhy采纳,获得30
2秒前
3秒前
jie完成签到,获得积分10
3秒前
精明的飞松完成签到,获得积分10
3秒前
3秒前
斯文败类应助Gemini采纳,获得10
3秒前
3秒前
燕天与发布了新的文献求助10
4秒前
lmd发布了新的文献求助10
4秒前
彭于晏应助爱上人家四月采纳,获得10
5秒前
微笑向卉发布了新的文献求助10
5秒前
znn发布了新的文献求助10
6秒前
LL发布了新的文献求助10
6秒前
7秒前
自信棒棒糖完成签到,获得积分10
7秒前
DFX完成签到,获得积分10
7秒前
7秒前
杨金城发布了新的文献求助10
7秒前
陈少华发布了新的文献求助10
7秒前
朱冬雨发布了新的文献求助10
8秒前
故意的书本完成签到 ,获得积分10
8秒前
北冥鱼发布了新的文献求助10
9秒前
董帅发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
领导范儿应助weimin采纳,获得10
9秒前
9秒前
10秒前
卓越爱科研完成签到,获得积分10
10秒前
11秒前
秋水发布了新的文献求助10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
Food Microbiology - An Introduction (5th Edition) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4884157
求助须知:如何正确求助?哪些是违规求助? 4169517
关于积分的说明 12937821
捐赠科研通 3929912
什么是DOI,文献DOI怎么找? 2156356
邀请新用户注册赠送积分活动 1174775
关于科研通互助平台的介绍 1079548