已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Convolutional and recurrent neural networks for the detection of valvular heart diseases in phonocardiogram recordings

心音图 计算机科学 卷积神经网络 医学 模式识别(心理学) 心脏病学 深度学习 人工智能 二尖瓣反流 狭窄 内科学 人工神经网络
作者
Mohanad Alkhodari,Luay Fraiwan
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:200: 105940-105940 被引量:162
标识
DOI:10.1016/j.cmpb.2021.105940
摘要

Valvular heart diseases (VHD) are one of the major causes of cardiovascular diseases that are having high mortality rates worldwide. The early diagnosis of VHD prevents the development of cardiac diseases and allows for optimum medication. Despite of the ability of current gold standards in identifying VHD, they still lack the required accuracy and thus, several cases go misdiagnosed. In this vein, a study is conducted herein to investigate the efficiency of deep learning models in identifying VHD through phonocardiography (PCG) recordings. PCG heart sounds were obtained from an open-access data-set representing normal heart sounds along with four major VHD; namely aortic stenosis (AS), mitral stenosis (MS), mitral regurgitation (MR), and mitral valve prolapse (MVP). A total of 1,000 patients were involved in the study with 200 recordings for each class. All recordings were initially trimmed to have 9,600 samples ensuring their coverage of at least 1 cardiac cycle. In addition, they were pre-processed by applying maximal overlap discrete wavelet transform (MODWT) smoothing algorithm and z-score normalization. The neural network architecture was designed to reduce the complexity often found in literature and consisted of a combination of convolutional neural networks (CNN) and recurrent neural networks (RNN) based on Bi-directional long short-term memory (BiLSTM). The model was trained and tested following a k-fold cross-validation scheme of 10-folds utilizing the CNN-BiLSTM network as well as the CNN and BiLSTM, individually. The highest performance was achieved using the CNN-BiLSTM network with an overall Cohen’s kappa, accuracy, sensitivity, and specificity of 97.87%, 99.32%, 98.30%, and 99.58%, respectively. In addition, the model had an average area under the curve (AUC) of 0.998. Furthermore, the performance of the model was assessed on the PhysioNet/Computing in Cardiology 2016 challenge data-set and reached an overall accuracy of 87.31% with an AUC of 0.900. This study paves the way towards implementing deep learning models in VHD identification under clinical settings to assist clinicians in decision making and prevent many cases from cardiac abnormalities development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
今后应助morainzh采纳,获得10
1秒前
2秒前
江南春发布了新的文献求助10
2秒前
困困包发布了新的文献求助10
4秒前
郦稀完成签到,获得积分10
5秒前
韩痘先生发布了新的文献求助10
6秒前
哈哈完成签到 ,获得积分10
6秒前
sln发布了新的文献求助10
6秒前
房LY发布了新的文献求助20
8秒前
9秒前
万能图书馆应助lvzhihao采纳,获得10
9秒前
Mic应助方同学采纳,获得10
10秒前
汉堡包应助研友_8Kedgn采纳,获得10
11秒前
草中花蕊完成签到 ,获得积分10
11秒前
LoLo完成签到,获得积分10
13秒前
16秒前
zhuzhu发布了新的文献求助10
17秒前
bkagyin应助傲娇的小松鼠采纳,获得10
18秒前
华仔应助fuzh采纳,获得10
18秒前
18秒前
sln完成签到,获得积分10
18秒前
ichigo发布了新的文献求助200
19秒前
zcs完成签到,获得积分10
20秒前
lvzhihao发布了新的文献求助10
21秒前
22秒前
奔跑的小熊完成签到 ,获得积分10
25秒前
韩楠完成签到 ,获得积分10
28秒前
刺猬发布了新的文献求助10
28秒前
30秒前
烊驼发布了新的文献求助30
30秒前
sskaze完成签到 ,获得积分10
34秒前
VDC发布了新的文献求助10
34秒前
卷毛发布了新的文献求助10
35秒前
科研通AI6应助笑语解清愁采纳,获得30
37秒前
fiife应助困困包采纳,获得10
37秒前
shi完成签到,获得积分10
38秒前
39秒前
小星发布了新的文献求助10
39秒前
刘安然发布了新的文献求助30
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590088
求助须知:如何正确求助?哪些是违规求助? 4674539
关于积分的说明 14794246
捐赠科研通 4630025
什么是DOI,文献DOI怎么找? 2532525
邀请新用户注册赠送积分活动 1501202
关于科研通互助平台的介绍 1468561