Convolutional and recurrent neural networks for the detection of valvular heart diseases in phonocardiogram recordings

心音图 计算机科学 卷积神经网络 医学 模式识别(心理学) 心脏病学 深度学习 人工智能 二尖瓣反流 狭窄 内科学 人工神经网络
作者
Mohanad Alkhodari,Luay Fraiwan
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:200: 105940-105940 被引量:162
标识
DOI:10.1016/j.cmpb.2021.105940
摘要

Valvular heart diseases (VHD) are one of the major causes of cardiovascular diseases that are having high mortality rates worldwide. The early diagnosis of VHD prevents the development of cardiac diseases and allows for optimum medication. Despite of the ability of current gold standards in identifying VHD, they still lack the required accuracy and thus, several cases go misdiagnosed. In this vein, a study is conducted herein to investigate the efficiency of deep learning models in identifying VHD through phonocardiography (PCG) recordings. PCG heart sounds were obtained from an open-access data-set representing normal heart sounds along with four major VHD; namely aortic stenosis (AS), mitral stenosis (MS), mitral regurgitation (MR), and mitral valve prolapse (MVP). A total of 1,000 patients were involved in the study with 200 recordings for each class. All recordings were initially trimmed to have 9,600 samples ensuring their coverage of at least 1 cardiac cycle. In addition, they were pre-processed by applying maximal overlap discrete wavelet transform (MODWT) smoothing algorithm and z-score normalization. The neural network architecture was designed to reduce the complexity often found in literature and consisted of a combination of convolutional neural networks (CNN) and recurrent neural networks (RNN) based on Bi-directional long short-term memory (BiLSTM). The model was trained and tested following a k-fold cross-validation scheme of 10-folds utilizing the CNN-BiLSTM network as well as the CNN and BiLSTM, individually. The highest performance was achieved using the CNN-BiLSTM network with an overall Cohen’s kappa, accuracy, sensitivity, and specificity of 97.87%, 99.32%, 98.30%, and 99.58%, respectively. In addition, the model had an average area under the curve (AUC) of 0.998. Furthermore, the performance of the model was assessed on the PhysioNet/Computing in Cardiology 2016 challenge data-set and reached an overall accuracy of 87.31% with an AUC of 0.900. This study paves the way towards implementing deep learning models in VHD identification under clinical settings to assist clinicians in decision making and prevent many cases from cardiac abnormalities development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
一只滦完成签到,获得积分10
2秒前
丘比特应助gong9456采纳,获得10
2秒前
迎南完成签到,获得积分10
3秒前
4秒前
4秒前
5秒前
6秒前
梁寒完成签到,获得积分10
7秒前
科研通AI6应助君莫笑采纳,获得10
7秒前
旺仔小高发布了新的文献求助10
7秒前
幸福白安发布了新的文献求助10
7秒前
7秒前
科研狗发布了新的文献求助10
7秒前
桃李发布了新的文献求助10
7秒前
7秒前
Executor完成签到,获得积分10
7秒前
8秒前
8秒前
天真的半莲完成签到,获得积分20
9秒前
可能可能最可能不像不像不太像完成签到,获得积分10
10秒前
chenjun7080完成签到,获得积分10
10秒前
爱学习的公主完成签到,获得积分10
10秒前
曈梦完成签到,获得积分10
11秒前
烟花应助zouxiang采纳,获得10
11秒前
李爱国应助孤独星月采纳,获得10
12秒前
科研通AI6应助腌椰菜采纳,获得10
12秒前
Jason完成签到,获得积分10
13秒前
不靠谱发布了新的文献求助10
13秒前
漂泊完成签到,获得积分10
14秒前
15秒前
15秒前
alpv完成签到,获得积分10
15秒前
Zhao发布了新的文献求助30
15秒前
追风少年完成签到 ,获得积分10
16秒前
16秒前
乐乐应助水水采纳,获得10
17秒前
17秒前
科研通AI6应助yeliya99采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600913
求助须知:如何正确求助?哪些是违规求助? 4686477
关于积分的说明 14844184
捐赠科研通 4678943
什么是DOI,文献DOI怎么找? 2539074
邀请新用户注册赠送积分活动 1505992
关于科研通互助平台的介绍 1471252