Convolutional and recurrent neural networks for the detection of valvular heart diseases in phonocardiogram recordings

心音图 计算机科学 卷积神经网络 医学 模式识别(心理学) 心脏病学 深度学习 人工智能 二尖瓣反流 狭窄 内科学 人工神经网络
作者
Mohanad Alkhodari,Luay Fraiwan
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:200: 105940-105940 被引量:162
标识
DOI:10.1016/j.cmpb.2021.105940
摘要

Valvular heart diseases (VHD) are one of the major causes of cardiovascular diseases that are having high mortality rates worldwide. The early diagnosis of VHD prevents the development of cardiac diseases and allows for optimum medication. Despite of the ability of current gold standards in identifying VHD, they still lack the required accuracy and thus, several cases go misdiagnosed. In this vein, a study is conducted herein to investigate the efficiency of deep learning models in identifying VHD through phonocardiography (PCG) recordings. PCG heart sounds were obtained from an open-access data-set representing normal heart sounds along with four major VHD; namely aortic stenosis (AS), mitral stenosis (MS), mitral regurgitation (MR), and mitral valve prolapse (MVP). A total of 1,000 patients were involved in the study with 200 recordings for each class. All recordings were initially trimmed to have 9,600 samples ensuring their coverage of at least 1 cardiac cycle. In addition, they were pre-processed by applying maximal overlap discrete wavelet transform (MODWT) smoothing algorithm and z-score normalization. The neural network architecture was designed to reduce the complexity often found in literature and consisted of a combination of convolutional neural networks (CNN) and recurrent neural networks (RNN) based on Bi-directional long short-term memory (BiLSTM). The model was trained and tested following a k-fold cross-validation scheme of 10-folds utilizing the CNN-BiLSTM network as well as the CNN and BiLSTM, individually. The highest performance was achieved using the CNN-BiLSTM network with an overall Cohen’s kappa, accuracy, sensitivity, and specificity of 97.87%, 99.32%, 98.30%, and 99.58%, respectively. In addition, the model had an average area under the curve (AUC) of 0.998. Furthermore, the performance of the model was assessed on the PhysioNet/Computing in Cardiology 2016 challenge data-set and reached an overall accuracy of 87.31% with an AUC of 0.900. This study paves the way towards implementing deep learning models in VHD identification under clinical settings to assist clinicians in decision making and prevent many cases from cardiac abnormalities development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
愉快彩虹完成签到,获得积分10
刚刚
小新发布了新的文献求助10
刚刚
Azura完成签到,获得积分10
刚刚
Guidong_Wang完成签到,获得积分10
刚刚
辛勤如柏发布了新的文献求助10
刚刚
lizuosheng1972完成签到,获得积分10
刚刚
笨蛋研究生完成签到,获得积分10
刚刚
小美女完成签到,获得积分10
1秒前
Leo发布了新的文献求助10
1秒前
1秒前
kk发布了新的文献求助10
2秒前
科研通AI6应助liang2508采纳,获得10
3秒前
zdk_123完成签到,获得积分10
3秒前
一笑看尽长安花完成签到,获得积分10
3秒前
hehe发布了新的文献求助10
4秒前
拉长的芷烟完成签到 ,获得积分10
4秒前
NexusExplorer应助健身哥采纳,获得10
4秒前
王泽完成签到,获得积分20
4秒前
Cynthia完成签到,获得积分10
4秒前
5秒前
798完成签到,获得积分10
5秒前
兔子不爱吃胡萝卜完成签到,获得积分10
5秒前
天天快乐应助merlin采纳,获得10
5秒前
6秒前
超级无心完成签到,获得积分10
6秒前
SUN完成签到 ,获得积分10
6秒前
PP完成签到,获得积分10
6秒前
Metx完成签到 ,获得积分10
7秒前
糖糖糖唐发布了新的文献求助10
7秒前
doudou完成签到,获得积分10
7秒前
煎饼果子完成签到 ,获得积分10
7秒前
夏春丽完成签到 ,获得积分10
9秒前
JF123_完成签到 ,获得积分10
10秒前
雪下卧眠完成签到,获得积分10
10秒前
hehe完成签到,获得积分10
10秒前
lvwenjie完成签到 ,获得积分10
10秒前
ssss完成签到,获得积分10
11秒前
tian发布了新的文献求助10
11秒前
PN_Allen完成签到,获得积分0
11秒前
垃圾智造者完成签到,获得积分10
12秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Problem based learning 1000
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5388001
求助须知:如何正确求助?哪些是违规求助? 4509881
关于积分的说明 14033262
捐赠科研通 4420771
什么是DOI,文献DOI怎么找? 2428439
邀请新用户注册赠送积分活动 1421106
关于科研通互助平台的介绍 1400293