亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Convolutional and recurrent neural networks for the detection of valvular heart diseases in phonocardiogram recordings

心音图 计算机科学 卷积神经网络 医学 模式识别(心理学) 心脏病学 深度学习 人工智能 二尖瓣反流 狭窄 内科学 人工神经网络
作者
Mohanad Alkhodari,Luay Fraiwan
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:200: 105940-105940 被引量:162
标识
DOI:10.1016/j.cmpb.2021.105940
摘要

Valvular heart diseases (VHD) are one of the major causes of cardiovascular diseases that are having high mortality rates worldwide. The early diagnosis of VHD prevents the development of cardiac diseases and allows for optimum medication. Despite of the ability of current gold standards in identifying VHD, they still lack the required accuracy and thus, several cases go misdiagnosed. In this vein, a study is conducted herein to investigate the efficiency of deep learning models in identifying VHD through phonocardiography (PCG) recordings. PCG heart sounds were obtained from an open-access data-set representing normal heart sounds along with four major VHD; namely aortic stenosis (AS), mitral stenosis (MS), mitral regurgitation (MR), and mitral valve prolapse (MVP). A total of 1,000 patients were involved in the study with 200 recordings for each class. All recordings were initially trimmed to have 9,600 samples ensuring their coverage of at least 1 cardiac cycle. In addition, they were pre-processed by applying maximal overlap discrete wavelet transform (MODWT) smoothing algorithm and z-score normalization. The neural network architecture was designed to reduce the complexity often found in literature and consisted of a combination of convolutional neural networks (CNN) and recurrent neural networks (RNN) based on Bi-directional long short-term memory (BiLSTM). The model was trained and tested following a k-fold cross-validation scheme of 10-folds utilizing the CNN-BiLSTM network as well as the CNN and BiLSTM, individually. The highest performance was achieved using the CNN-BiLSTM network with an overall Cohen’s kappa, accuracy, sensitivity, and specificity of 97.87%, 99.32%, 98.30%, and 99.58%, respectively. In addition, the model had an average area under the curve (AUC) of 0.998. Furthermore, the performance of the model was assessed on the PhysioNet/Computing in Cardiology 2016 challenge data-set and reached an overall accuracy of 87.31% with an AUC of 0.900. This study paves the way towards implementing deep learning models in VHD identification under clinical settings to assist clinicians in decision making and prevent many cases from cardiac abnormalities development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kkkk完成签到,获得积分10
2秒前
4秒前
Lucas应助科研通管家采纳,获得10
6秒前
我是老大应助科研通管家采纳,获得10
6秒前
神勇荷花完成签到,获得积分20
14秒前
14秒前
Frank发布了新的文献求助10
17秒前
Chris完成签到 ,获得积分0
20秒前
星辰大海应助Frank采纳,获得10
22秒前
阿空完成签到 ,获得积分10
25秒前
汉堡包应助zzz采纳,获得10
29秒前
38秒前
zzz发布了新的文献求助10
42秒前
hoy完成签到 ,获得积分10
42秒前
默默的诗云完成签到 ,获得积分20
49秒前
吉吉国王的跟班完成签到 ,获得积分10
54秒前
科研通AI6.1应助翔哥采纳,获得10
59秒前
1分钟前
尘默发布了新的文献求助10
1分钟前
隐形曼青应助Chao123_采纳,获得10
1分钟前
1分钟前
1分钟前
Chao123_发布了新的文献求助10
1分钟前
充电宝应助尘默采纳,获得10
1分钟前
十一完成签到 ,获得积分10
1分钟前
1分钟前
虚幻雁荷发布了新的文献求助10
1分钟前
1分钟前
bkagyin应助虚幻雁荷采纳,获得10
1分钟前
Frank发布了新的文献求助10
1分钟前
minhdh完成签到,获得积分10
1分钟前
bkagyin应助Frank采纳,获得10
1分钟前
2分钟前
含糊的书兰完成签到 ,获得积分10
2分钟前
不安的非笑完成签到,获得积分10
2分钟前
脑洞疼应助科研通管家采纳,获得30
2分钟前
2分钟前
瑜蛋完成签到 ,获得积分10
2分钟前
情怀应助匆匆流浪采纳,获得10
2分钟前
木九发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
The Dance of Butch/Femme: The Complementarity and Autonomy of Lesbian Gender Identity 500
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
Differentiation Between Social Groups: Studies in the Social Psychology of Intergroup Relations 350
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5875549
求助须知:如何正确求助?哪些是违规求助? 6518322
关于积分的说明 15677256
捐赠科研通 4993517
什么是DOI,文献DOI怎么找? 2691534
邀请新用户注册赠送积分活动 1633787
关于科研通互助平台的介绍 1591442