Convolutional and recurrent neural networks for the detection of valvular heart diseases in phonocardiogram recordings

心音图 计算机科学 卷积神经网络 医学 模式识别(心理学) 心脏病学 深度学习 人工智能 二尖瓣反流 狭窄 内科学 人工神经网络
作者
Mohanad Alkhodari,Luay Fraiwan
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:200: 105940-105940 被引量:121
标识
DOI:10.1016/j.cmpb.2021.105940
摘要

Valvular heart diseases (VHD) are one of the major causes of cardiovascular diseases that are having high mortality rates worldwide. The early diagnosis of VHD prevents the development of cardiac diseases and allows for optimum medication. Despite of the ability of current gold standards in identifying VHD, they still lack the required accuracy and thus, several cases go misdiagnosed. In this vein, a study is conducted herein to investigate the efficiency of deep learning models in identifying VHD through phonocardiography (PCG) recordings. PCG heart sounds were obtained from an open-access data-set representing normal heart sounds along with four major VHD; namely aortic stenosis (AS), mitral stenosis (MS), mitral regurgitation (MR), and mitral valve prolapse (MVP). A total of 1,000 patients were involved in the study with 200 recordings for each class. All recordings were initially trimmed to have 9,600 samples ensuring their coverage of at least 1 cardiac cycle. In addition, they were pre-processed by applying maximal overlap discrete wavelet transform (MODWT) smoothing algorithm and z-score normalization. The neural network architecture was designed to reduce the complexity often found in literature and consisted of a combination of convolutional neural networks (CNN) and recurrent neural networks (RNN) based on Bi-directional long short-term memory (BiLSTM). The model was trained and tested following a k-fold cross-validation scheme of 10-folds utilizing the CNN-BiLSTM network as well as the CNN and BiLSTM, individually. The highest performance was achieved using the CNN-BiLSTM network with an overall Cohen’s kappa, accuracy, sensitivity, and specificity of 97.87%, 99.32%, 98.30%, and 99.58%, respectively. In addition, the model had an average area under the curve (AUC) of 0.998. Furthermore, the performance of the model was assessed on the PhysioNet/Computing in Cardiology 2016 challenge data-set and reached an overall accuracy of 87.31% with an AUC of 0.900. This study paves the way towards implementing deep learning models in VHD identification under clinical settings to assist clinicians in decision making and prevent many cases from cardiac abnormalities development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
辻辰完成签到,获得积分20
3秒前
丘比特应助郦涔采纳,获得10
4秒前
4秒前
bkagyin应助Ni采纳,获得10
8秒前
8秒前
Emily完成签到,获得积分10
9秒前
陈m完成签到 ,获得积分10
9秒前
快乐的心情完成签到,获得积分10
10秒前
xm完成签到,获得积分10
11秒前
12秒前
13秒前
14秒前
14秒前
Luny发布了新的文献求助10
15秒前
15秒前
16秒前
16秒前
16秒前
17秒前
华仔应助tong采纳,获得10
17秒前
羊羊完成签到,获得积分10
18秒前
18秒前
Yuanyuan完成签到,获得积分10
19秒前
sxy0604完成签到,获得积分10
19秒前
我是老大应助syccc采纳,获得10
20秒前
亦瑶发布了新的文献求助10
20秒前
达da应助啊啊啊采纳,获得10
20秒前
一兜兜糖发布了新的文献求助10
21秒前
Ni发布了新的文献求助10
22秒前
Luny完成签到,获得积分20
23秒前
ANNNNN发布了新的文献求助10
24秒前
24秒前
认真飞瑶发布了新的文献求助10
25秒前
26秒前
wwww发布了新的文献求助10
29秒前
29秒前
小小完成签到 ,获得积分10
29秒前
小心完成签到 ,获得积分10
29秒前
斯文败类应助青青草采纳,获得10
30秒前
tong发布了新的文献求助10
31秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
【本贴是提醒信息,请勿应助】请在求助之前详细阅读求助说明!!!! 20000
Evolution 5000
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
La Chine révolutionnaire d'aujourd'hui / Van Min, Kang Hsin 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3044554
求助须知:如何正确求助?哪些是违规求助? 2701739
关于积分的说明 7384800
捐赠科研通 2345718
什么是DOI,文献DOI怎么找? 1241583
科研通“疑难数据库(出版商)”最低求助积分说明 603979
版权声明 595503