Convolutional and recurrent neural networks for the detection of valvular heart diseases in phonocardiogram recordings

心音图 计算机科学 卷积神经网络 医学 模式识别(心理学) 心脏病学 深度学习 人工智能 二尖瓣反流 狭窄 内科学 人工神经网络
作者
Mohanad Alkhodari,Luay Fraiwan
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:200: 105940-105940 被引量:162
标识
DOI:10.1016/j.cmpb.2021.105940
摘要

Valvular heart diseases (VHD) are one of the major causes of cardiovascular diseases that are having high mortality rates worldwide. The early diagnosis of VHD prevents the development of cardiac diseases and allows for optimum medication. Despite of the ability of current gold standards in identifying VHD, they still lack the required accuracy and thus, several cases go misdiagnosed. In this vein, a study is conducted herein to investigate the efficiency of deep learning models in identifying VHD through phonocardiography (PCG) recordings. PCG heart sounds were obtained from an open-access data-set representing normal heart sounds along with four major VHD; namely aortic stenosis (AS), mitral stenosis (MS), mitral regurgitation (MR), and mitral valve prolapse (MVP). A total of 1,000 patients were involved in the study with 200 recordings for each class. All recordings were initially trimmed to have 9,600 samples ensuring their coverage of at least 1 cardiac cycle. In addition, they were pre-processed by applying maximal overlap discrete wavelet transform (MODWT) smoothing algorithm and z-score normalization. The neural network architecture was designed to reduce the complexity often found in literature and consisted of a combination of convolutional neural networks (CNN) and recurrent neural networks (RNN) based on Bi-directional long short-term memory (BiLSTM). The model was trained and tested following a k-fold cross-validation scheme of 10-folds utilizing the CNN-BiLSTM network as well as the CNN and BiLSTM, individually. The highest performance was achieved using the CNN-BiLSTM network with an overall Cohen’s kappa, accuracy, sensitivity, and specificity of 97.87%, 99.32%, 98.30%, and 99.58%, respectively. In addition, the model had an average area under the curve (AUC) of 0.998. Furthermore, the performance of the model was assessed on the PhysioNet/Computing in Cardiology 2016 challenge data-set and reached an overall accuracy of 87.31% with an AUC of 0.900. This study paves the way towards implementing deep learning models in VHD identification under clinical settings to assist clinicians in decision making and prevent many cases from cardiac abnormalities development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
3秒前
香蕉觅云应助王哈哈哈哈采纳,获得10
3秒前
CT发布了新的文献求助10
3秒前
重要忆秋完成签到,获得积分10
4秒前
zqlxueli发布了新的文献求助10
6秒前
小二郎应助唉呦嘿采纳,获得10
7秒前
7秒前
Felix发布了新的文献求助10
8秒前
浮游应助苏su采纳,获得10
8秒前
zht发布了新的文献求助20
9秒前
Dimple完成签到,获得积分10
11秒前
Aug31发布了新的文献求助10
13秒前
14秒前
木木枭完成签到,获得积分10
14秒前
星辰大海应助余语羽采纳,获得10
17秒前
王哈哈哈哈完成签到,获得积分10
18秒前
18秒前
duo111完成签到,获得积分10
19秒前
诚诚不差事完成签到,获得积分10
21秒前
量子星尘发布了新的文献求助10
22秒前
饭二完成签到,获得积分10
22秒前
22秒前
十一完成签到,获得积分10
22秒前
CEJ发布了新的文献求助10
22秒前
23秒前
核桃发布了新的文献求助10
23秒前
科研通AI6应助Water采纳,获得200
23秒前
23秒前
mhcsci完成签到,获得积分10
26秒前
zhangzf完成签到,获得积分10
27秒前
求知的周发布了新的文献求助50
27秒前
西喜发布了新的文献求助10
27秒前
文献求助发布了新的文献求助10
27秒前
28秒前
28秒前
糙糙科研发布了新的文献求助10
29秒前
夏晴晴完成签到,获得积分10
29秒前
mmz完成签到 ,获得积分10
31秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5453769
求助须知:如何正确求助?哪些是违规求助? 4561299
关于积分的说明 14282133
捐赠科研通 4485276
什么是DOI,文献DOI怎么找? 2456659
邀请新用户注册赠送积分活动 1447324
关于科研通互助平台的介绍 1422701