暴发洪水
多雨的
数据库
水文气象
大洪水
事件(粒子物理)
空间数据库
表(数据库)
环境科学
地理
计算机科学
气象学
空间分析
遥感
地质学
降水
物理
考古
海洋学
量子力学
作者
Maria Kaiser,Stephan Günnemann,Markus Disse
标识
DOI:10.1016/j.jhydrol.2021.125985
摘要
Flash floods are a worldwide threat to humans, which is why they are being intensively studied using historical event records. As measurements and event data increase, databases are becoming increasingly important for flash flood research. However, the recent literature on flood databases lacks technical details as well as discussions about a suitable database design for scientific investigations. In this paper, we thus show how an event database for the investigation of heavy rain-induced flood occurrences can be created. Based on the HiOS dataset (a German dataset with ~ 23,800 flash flood and pluvial flood events), we exemplify the database design and explore the spatiotemporal characteristics of floods caused by heavy rain in Germany. We outline all aspects relevant to database setup: from database requirements and system architecture through table and attribute design to a key and relationship definition. Furthermore, we clarify why a spatial database with interfaces for GIS softwares should be chosen, why a damage-based event definition is preferable to a hydrometeorological definition, and how table attributes support differentiated analyses. By means of the database, we investigated frequency, temporal evolution, spatial distribution and patterns, fatalities and injuries, as well as the seasonality of heavy rain-induced floods in Germany. The results indicate that floods caused by heavy rain occur throughout Germany but with a tendency toward fewer events in the northern direction. Across the country, we identified seven hot spots in urbanized and mountainous regions. Although heavy rain-induced floods in Germany take place mostly between noon and late afternoon, most people are injured and killed in events starting in the evening. Our investigation indicates an increased incidence of flash flood and pluvial flood-related injuries and fatalities in the identified hot spots. Overall, we observe a pronounced summer seasonality of the heavy rain-induced flood events. This study highlights the importance of event databases for flash flood research and advances our understanding of heavy rain-induced flood occurrences in Germany.
科研通智能强力驱动
Strongly Powered by AbleSci AI