Computational methods to automate the initial interpretation of lower extremity arterial Doppler and duplex carotid ultrasound studies

医学 狭窄 超声波 复式(建筑) 放射科 多普勒效应 人工智能 计算机科学 天文 遗传学 生物 物理 DNA
作者
Xiao Luo,Lena Ara,Haoran Ding,David Rollins,Raghu L. Motaganahalli,Alan P. Sawchuk
出处
期刊:Journal of Vascular Surgery [Elsevier BV]
卷期号:74 (3): 988-996.e1 被引量:2
标识
DOI:10.1016/j.jvs.2021.02.050
摘要

Abstract

Background

Lower extremity arterial Doppler (LEAD) and duplex carotid ultrasound studies are used for the initial evaluation of peripheral arterial disease and carotid stenosis. However, intra- and inter-laboratory variability exists between interpreters, and other interpreter responsibilities can delay the timeliness of the report. To address these deficits, we examined whether machine learning algorithms could be used to classify these Doppler ultrasound studies.

Methods

We developed a hierarchical deep learning model to classify aortoiliac, femoropopliteal, and trifurcation disease in LEAD ultrasound studies and a random forest machine learning algorithm to classify the amount of carotid stenosis from duplex carotid ultrasound studies using experienced physician interpretation in an active, credentialed vascular laboratory as the reference standard. Waveforms, pressures, flow velocities, and the presence of plaque were input into a hierarchal neural network. Artificial intelligence was developed to automate the interpretation of these LEAD and carotid duplex ultrasound studies. Statistical analysis was performed using the confusion matrix.

Results

We extracted 5761 LEAD ultrasound studies from 2015 to 2017 and 18,650 duplex carotid ultrasound studies from 2016 to 2018 from the Indiana University Health system. The results showed the ability of artificial intelligence algorithms and method, with 97.0% accuracy for predicting normal cases, 88.2% accuracy for aortoiliac disease, 90.1% accuracy for femoropopliteal disease, and 90.5% accuracy for trifurcation disease. For internal carotid artery stenosis, the accuracy was 99.2% for predicting 0% to 49% stenosis, 100% for predicting 50% to 69% stenosis, 100% for predicting >70% stenosis, and 100% for predicting occlusion. For common carotid artery stenosis, the accuracy was 99.9% for predicting 0% to 49% stenosis, 100% for predicting 50% to 99% stenosis, and 100% for predicting occlusion.

Conclusions

The machine learning models using LEAD data, with the collected blood pressure and waveform data, and duplex carotid ultrasound data with the flow velocities and the presence of plaque, showed that novel machine learning models are reliable in differentiating normal from diseased arterial systems and accurate in classifying the extent of vascular disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王志新完成签到,获得积分10
刚刚
远方橙发布了新的文献求助30
刚刚
woxiangbiye发布了新的文献求助10
刚刚
科研通AI5应助自信南霜采纳,获得10
1秒前
子星完成签到,获得积分10
1秒前
2秒前
解博童发布了新的文献求助10
2秒前
邢夏之完成签到,获得积分10
2秒前
3秒前
顾矜应助开心的迎海采纳,获得10
3秒前
Swagger完成签到,获得积分10
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
我是老大应助sun采纳,获得10
4秒前
充电宝应助灵巧晓亦采纳,获得10
5秒前
木几木几发布了新的文献求助30
5秒前
风衣拖地完成签到 ,获得积分10
6秒前
6秒前
方老师完成签到,获得积分10
6秒前
彩色的笑旋完成签到,获得积分20
6秒前
wanci应助干净士晋采纳,获得10
7秒前
做好自己发布了新的文献求助10
7秒前
狗宅发布了新的文献求助10
8秒前
8秒前
CodeCraft应助科研通管家采纳,获得10
10秒前
skyscraper完成签到,获得积分10
10秒前
科目三应助科研通管家采纳,获得10
10秒前
Tourist应助科研通管家采纳,获得150
10秒前
精明幻悲发布了新的文献求助10
10秒前
英俊的铭应助科研通管家采纳,获得10
10秒前
彭于晏应助科研通管家采纳,获得10
10秒前
兰瓜瓜完成签到,获得积分10
10秒前
iNk应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
iNk应助科研通管家采纳,获得10
10秒前
唐泽雪穗应助tczw667采纳,获得10
10秒前
乐乐应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
桐桐应助科研通管家采纳,获得10
11秒前
zcl应助科研通管家采纳,获得150
11秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5132616
求助须知:如何正确求助?哪些是违规求助? 4333988
关于积分的说明 13502721
捐赠科研通 4171020
什么是DOI,文献DOI怎么找? 2286820
邀请新用户注册赠送积分活动 1287691
关于科研通互助平台的介绍 1228590