Computational methods to automate the initial interpretation of lower extremity arterial Doppler and duplex carotid ultrasound studies

医学 狭窄 超声波 复式(建筑) 放射科 多普勒效应 人工智能 计算机科学 天文 遗传学 生物 物理 DNA
作者
Xiao Luo,Lena Ara,Haoran Ding,David Rollins,Raghu L. Motaganahalli,Alan P. Sawchuk
出处
期刊:Journal of Vascular Surgery [Elsevier BV]
卷期号:74 (3): 988-996.e1 被引量:2
标识
DOI:10.1016/j.jvs.2021.02.050
摘要

Abstract

Background

Lower extremity arterial Doppler (LEAD) and duplex carotid ultrasound studies are used for the initial evaluation of peripheral arterial disease and carotid stenosis. However, intra- and inter-laboratory variability exists between interpreters, and other interpreter responsibilities can delay the timeliness of the report. To address these deficits, we examined whether machine learning algorithms could be used to classify these Doppler ultrasound studies.

Methods

We developed a hierarchical deep learning model to classify aortoiliac, femoropopliteal, and trifurcation disease in LEAD ultrasound studies and a random forest machine learning algorithm to classify the amount of carotid stenosis from duplex carotid ultrasound studies using experienced physician interpretation in an active, credentialed vascular laboratory as the reference standard. Waveforms, pressures, flow velocities, and the presence of plaque were input into a hierarchal neural network. Artificial intelligence was developed to automate the interpretation of these LEAD and carotid duplex ultrasound studies. Statistical analysis was performed using the confusion matrix.

Results

We extracted 5761 LEAD ultrasound studies from 2015 to 2017 and 18,650 duplex carotid ultrasound studies from 2016 to 2018 from the Indiana University Health system. The results showed the ability of artificial intelligence algorithms and method, with 97.0% accuracy for predicting normal cases, 88.2% accuracy for aortoiliac disease, 90.1% accuracy for femoropopliteal disease, and 90.5% accuracy for trifurcation disease. For internal carotid artery stenosis, the accuracy was 99.2% for predicting 0% to 49% stenosis, 100% for predicting 50% to 69% stenosis, 100% for predicting >70% stenosis, and 100% for predicting occlusion. For common carotid artery stenosis, the accuracy was 99.9% for predicting 0% to 49% stenosis, 100% for predicting 50% to 99% stenosis, and 100% for predicting occlusion.

Conclusions

The machine learning models using LEAD data, with the collected blood pressure and waveform data, and duplex carotid ultrasound data with the flow velocities and the presence of plaque, showed that novel machine learning models are reliable in differentiating normal from diseased arterial systems and accurate in classifying the extent of vascular disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助李帅采纳,获得10
1秒前
1秒前
2秒前
3秒前
5秒前
5秒前
桑葚啊完成签到,获得积分10
6秒前
复杂的之卉完成签到,获得积分10
9秒前
9秒前
9秒前
plant发布了新的文献求助10
9秒前
10秒前
11秒前
12秒前
甜蜜寄文完成签到 ,获得积分10
14秒前
15秒前
15秒前
落寞奎发布了新的文献求助10
16秒前
你怎么那么美完成签到,获得积分10
16秒前
16秒前
18秒前
小马甲应助wzj采纳,获得10
18秒前
传奇3应助plant采纳,获得10
18秒前
Ava应助SL采纳,获得10
19秒前
xxxyuxi发布了新的文献求助10
19秒前
22秒前
Bio应助Nelson采纳,获得30
23秒前
Triste发布了新的文献求助10
23秒前
24秒前
24秒前
幽默的小之完成签到,获得积分10
24秒前
落寞奎完成签到,获得积分10
24秒前
26秒前
26秒前
oliver1234完成签到,获得积分10
26秒前
26秒前
月下荷花发布了新的文献求助10
27秒前
xxxyuxi完成签到,获得积分10
27秒前
oliver1234发布了新的文献求助20
29秒前
29秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979704
求助须知:如何正确求助?哪些是违规求助? 3523679
关于积分的说明 11218338
捐赠科研通 3261196
什么是DOI,文献DOI怎么找? 1800490
邀请新用户注册赠送积分活动 879113
科研通“疑难数据库(出版商)”最低求助积分说明 807182