亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Computational methods to automate the initial interpretation of lower extremity arterial Doppler and duplex carotid ultrasound studies

医学 狭窄 超声波 复式(建筑) 放射科 多普勒效应 人工智能 计算机科学 天文 遗传学 生物 物理 DNA
作者
Xiao Luo,Lena Ara,Haoran Ding,David Rollins,Raghu L. Motaganahalli,Alan P. Sawchuk
出处
期刊:Journal of Vascular Surgery [Elsevier]
卷期号:74 (3): 988-996.e1 被引量:2
标识
DOI:10.1016/j.jvs.2021.02.050
摘要

Abstract

Background

Lower extremity arterial Doppler (LEAD) and duplex carotid ultrasound studies are used for the initial evaluation of peripheral arterial disease and carotid stenosis. However, intra- and inter-laboratory variability exists between interpreters, and other interpreter responsibilities can delay the timeliness of the report. To address these deficits, we examined whether machine learning algorithms could be used to classify these Doppler ultrasound studies.

Methods

We developed a hierarchical deep learning model to classify aortoiliac, femoropopliteal, and trifurcation disease in LEAD ultrasound studies and a random forest machine learning algorithm to classify the amount of carotid stenosis from duplex carotid ultrasound studies using experienced physician interpretation in an active, credentialed vascular laboratory as the reference standard. Waveforms, pressures, flow velocities, and the presence of plaque were input into a hierarchal neural network. Artificial intelligence was developed to automate the interpretation of these LEAD and carotid duplex ultrasound studies. Statistical analysis was performed using the confusion matrix.

Results

We extracted 5761 LEAD ultrasound studies from 2015 to 2017 and 18,650 duplex carotid ultrasound studies from 2016 to 2018 from the Indiana University Health system. The results showed the ability of artificial intelligence algorithms and method, with 97.0% accuracy for predicting normal cases, 88.2% accuracy for aortoiliac disease, 90.1% accuracy for femoropopliteal disease, and 90.5% accuracy for trifurcation disease. For internal carotid artery stenosis, the accuracy was 99.2% for predicting 0% to 49% stenosis, 100% for predicting 50% to 69% stenosis, 100% for predicting >70% stenosis, and 100% for predicting occlusion. For common carotid artery stenosis, the accuracy was 99.9% for predicting 0% to 49% stenosis, 100% for predicting 50% to 99% stenosis, and 100% for predicting occlusion.

Conclusions

The machine learning models using LEAD data, with the collected blood pressure and waveform data, and duplex carotid ultrasound data with the flow velocities and the presence of plaque, showed that novel machine learning models are reliable in differentiating normal from diseased arterial systems and accurate in classifying the extent of vascular disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张可完成签到 ,获得积分10
1秒前
9秒前
菜菜完成签到,获得积分10
20秒前
49秒前
听听发布了新的文献求助10
53秒前
咎不可完成签到,获得积分10
57秒前
听听完成签到,获得积分10
1分钟前
斯文败类应助科研通管家采纳,获得10
1分钟前
独特的友琴完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
星辰大海应助rinnki采纳,获得30
2分钟前
3分钟前
3分钟前
3分钟前
汉堡包应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
既然寄了,那就开摆完成签到 ,获得积分10
3分钟前
3分钟前
汤万天完成签到,获得积分10
3分钟前
千里快哉风完成签到 ,获得积分10
3分钟前
bingo发布了新的文献求助10
3分钟前
bingo完成签到,获得积分10
4分钟前
疯狂喵完成签到 ,获得积分10
4分钟前
4分钟前
不喜发布了新的文献求助10
4分钟前
不喜完成签到,获得积分10
4分钟前
田様应助科研通管家采纳,获得10
5分钟前
5分钟前
感性的道天关注了科研通微信公众号
5分钟前
5分钟前
渣渣辉发布了新的文献求助10
5分钟前
南与晚霞发布了新的文献求助10
5分钟前
这个手刹不太灵完成签到 ,获得积分10
5分钟前
明理吐司发布了新的文献求助30
5分钟前
linzw完成签到,获得积分10
6分钟前
kdjm688完成签到,获得积分10
6分钟前
6分钟前
齐弥发布了新的文献求助10
7分钟前
明理吐司完成签到,获得积分10
7分钟前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 850
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3248759
求助须知:如何正确求助?哪些是违规求助? 2892214
关于积分的说明 8270161
捐赠科研通 2560306
什么是DOI,文献DOI怎么找? 1388970
科研通“疑难数据库(出版商)”最低求助积分说明 650927
邀请新用户注册赠送积分活动 627850