Computational methods to automate the initial interpretation of lower extremity arterial Doppler and duplex carotid ultrasound studies

医学 狭窄 超声波 复式(建筑) 放射科 多普勒效应 人工智能 计算机科学 天文 遗传学 生物 物理 DNA
作者
Xiao Luo,Lena Ara,Haoran Ding,David Rollins,Raghu L. Motaganahalli,Alan P. Sawchuk
出处
期刊:Journal of Vascular Surgery [Elsevier]
卷期号:74 (3): 988-996.e1 被引量:2
标识
DOI:10.1016/j.jvs.2021.02.050
摘要

Abstract

Background

Lower extremity arterial Doppler (LEAD) and duplex carotid ultrasound studies are used for the initial evaluation of peripheral arterial disease and carotid stenosis. However, intra- and inter-laboratory variability exists between interpreters, and other interpreter responsibilities can delay the timeliness of the report. To address these deficits, we examined whether machine learning algorithms could be used to classify these Doppler ultrasound studies.

Methods

We developed a hierarchical deep learning model to classify aortoiliac, femoropopliteal, and trifurcation disease in LEAD ultrasound studies and a random forest machine learning algorithm to classify the amount of carotid stenosis from duplex carotid ultrasound studies using experienced physician interpretation in an active, credentialed vascular laboratory as the reference standard. Waveforms, pressures, flow velocities, and the presence of plaque were input into a hierarchal neural network. Artificial intelligence was developed to automate the interpretation of these LEAD and carotid duplex ultrasound studies. Statistical analysis was performed using the confusion matrix.

Results

We extracted 5761 LEAD ultrasound studies from 2015 to 2017 and 18,650 duplex carotid ultrasound studies from 2016 to 2018 from the Indiana University Health system. The results showed the ability of artificial intelligence algorithms and method, with 97.0% accuracy for predicting normal cases, 88.2% accuracy for aortoiliac disease, 90.1% accuracy for femoropopliteal disease, and 90.5% accuracy for trifurcation disease. For internal carotid artery stenosis, the accuracy was 99.2% for predicting 0% to 49% stenosis, 100% for predicting 50% to 69% stenosis, 100% for predicting >70% stenosis, and 100% for predicting occlusion. For common carotid artery stenosis, the accuracy was 99.9% for predicting 0% to 49% stenosis, 100% for predicting 50% to 99% stenosis, and 100% for predicting occlusion.

Conclusions

The machine learning models using LEAD data, with the collected blood pressure and waveform data, and duplex carotid ultrasound data with the flow velocities and the presence of plaque, showed that novel machine learning models are reliable in differentiating normal from diseased arterial systems and accurate in classifying the extent of vascular disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助Intro采纳,获得10
刚刚
SciGPT应助cat采纳,获得10
刚刚
Minkslion发布了新的文献求助10
刚刚
1秒前
酷波er应助细腻的麦片采纳,获得10
2秒前
lurenjia009完成签到,获得积分10
3秒前
3秒前
科研通AI5应助huangyi采纳,获得10
4秒前
yxy完成签到,获得积分10
4秒前
Orange应助yam001采纳,获得30
4秒前
4秒前
竹斟酒完成签到,获得积分10
5秒前
5秒前
5秒前
请叫我风吹麦浪应助Wxd0211采纳,获得10
5秒前
5秒前
5秒前
深情安青应助美女采纳,获得10
6秒前
111完成签到,获得积分10
6秒前
葛辉辉完成签到,获得积分10
7秒前
kangkang发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
SciGPT应助ye采纳,获得10
9秒前
乐乐应助自信晟睿采纳,获得10
9秒前
葛辉辉发布了新的文献求助10
9秒前
10秒前
Wxd0211完成签到,获得积分20
10秒前
nemo完成签到,获得积分10
11秒前
小橙子发布了新的文献求助10
11秒前
lxh2424发布了新的文献求助30
11秒前
万能图书馆应助YHL采纳,获得10
11秒前
请叫我风吹麦浪应助hu970采纳,获得10
11秒前
传统的慕儿完成签到,获得积分10
12秒前
aurora完成签到 ,获得积分10
12秒前
12秒前
领导范儿应助gyt采纳,获得10
14秒前
麦麦发布了新的文献求助10
14秒前
晴天完成签到,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762