托法替尼
贾纳斯激酶
STAT蛋白
环状肉芽肿
医学
促炎细胞因子
细胞因子
Janus激酶抑制剂
发病机制
免疫学
肿瘤抑制因子
炎症
癌症研究
生物
类风湿性关节炎
信号转导
白细胞介素6
车站3
细胞生物学
作者
Alice Wang,Nur-Taz Rahman,Meaghan K. McGeary,Michael J. Murphy,Austin McHenry,Danielle Peterson,Marcus Bosenberg,Richard A. Flavell,Brett King,William Damsky
标识
DOI:10.1016/j.jaci.2020.10.012
摘要
Background Granuloma annulare (GA) is a common cutaneous inflammatory disorder characterized by macrophage accumulation and activation in skin. Its pathogenesis is poorly understood, and there are no effective treatments. The potential health implications of severe GA are unknown. Objective We sought to better understand GA pathogenesis and evaluate a molecularly targeted treatment approach for this disease. Methods We used single-cell RNA sequencing to study the immunopathogenesis of GA and also evaluated the efficacy of tofacitinib (a Janus kinase 1/3 inhibitor) in 5 patients with severe, long-standing GA in an open-label clinical trial. Results Using single-cell RNA sequencing, we found that in GA lesions IFN-γ production by CD4+ T cells is upregulated and is associated with inflammatory polarization of macrophages and fibroblasts. In particular, macrophages upregulate oncostatin M, an IL-6 family cytokine, which appears to act on fibroblasts to alter extracellular matrix production, a hallmark of GA. IL-15 and IL-21 production appears to feed back on CD4+ T cells to sustain inflammation. Treatment of 5 patients with recalcitrant GA with tofacitinib inhibited IFN-γ and oncostatin M, as well as IL-15 and IL-21, activity and resulted in clinical and histologic disease remission in 3 patients and marked improvement in the other 2. Inhibition of these effects at the molecular level paralleled the clinical improvement. Evidence of systemic inflammation is also present in some patients with severe GA and is mitigated by tofacitinib. Conclusions The Janus kinase-signal transducer and activator of transcription pathway is activated in GA, likely in part through the activity of IFN-γ and oncostatin M, and Janus kinase inhibitors appear to be an effective treatment. Granuloma annulare (GA) is a common cutaneous inflammatory disorder characterized by macrophage accumulation and activation in skin. Its pathogenesis is poorly understood, and there are no effective treatments. The potential health implications of severe GA are unknown. We sought to better understand GA pathogenesis and evaluate a molecularly targeted treatment approach for this disease. We used single-cell RNA sequencing to study the immunopathogenesis of GA and also evaluated the efficacy of tofacitinib (a Janus kinase 1/3 inhibitor) in 5 patients with severe, long-standing GA in an open-label clinical trial. Using single-cell RNA sequencing, we found that in GA lesions IFN-γ production by CD4+ T cells is upregulated and is associated with inflammatory polarization of macrophages and fibroblasts. In particular, macrophages upregulate oncostatin M, an IL-6 family cytokine, which appears to act on fibroblasts to alter extracellular matrix production, a hallmark of GA. IL-15 and IL-21 production appears to feed back on CD4+ T cells to sustain inflammation. Treatment of 5 patients with recalcitrant GA with tofacitinib inhibited IFN-γ and oncostatin M, as well as IL-15 and IL-21, activity and resulted in clinical and histologic disease remission in 3 patients and marked improvement in the other 2. Inhibition of these effects at the molecular level paralleled the clinical improvement. Evidence of systemic inflammation is also present in some patients with severe GA and is mitigated by tofacitinib. The Janus kinase-signal transducer and activator of transcription pathway is activated in GA, likely in part through the activity of IFN-γ and oncostatin M, and Janus kinase inhibitors appear to be an effective treatment.
科研通智能强力驱动
Strongly Powered by AbleSci AI