3D生物打印
脚手架
生物医学工程
人体皮肤
组织工程
人造皮肤
材料科学
细胞外基质
皮肤当量
3d打印
挤压
纳米技术
计算机科学
化学
医学
角质形成细胞
体外
生物
细胞生物学
生物化学
遗传学
作者
Srinivas Ramasamy,Pooya Davoodi,Sanjairaj Vijayavenkataraman,Jia Heng Teoh,Anbu Mozhi Thamizhchelvan,Kim Robinson,Bin Wu,Jerry Ying Hsi Fuh,Teresa DiColandrea,Helen Zhao,E. Birgitte Lane,Chi Hwa Wang
出处
期刊:Bioprinting
[Elsevier]
日期:2021-03-01
卷期号:21: e00123-e00123
被引量:46
标识
DOI:10.1016/j.bprint.2020.e00123
摘要
Skin regeneration through tissue engineering combines biomaterials compatible with living cells to build a niche of limited duration that can support recapitulating reconstruction of the key features of native human skin. Reconstructed full thickness human skin is a promising platform for studying skin biology and assessing the safety and efficacy of cosmeceutical and clinical skin care products. Yet, as a target tissue for synthetic reconstruction, skin still carries a unique set of challenges, in spite of its well-defined 3D architecture, cell composition, and the constantly improving biocompatible synthetic materials now available to bioengineers. Commercial in vitro skin models are mostly prepared via manual deposition of cells into and onto a suitable extracellular matrix, which is usually difficult to mold into irregular shapes. There is an unmet need to develop a process for systematic 3D bioprinting of biomimetic skin that demonstrates full and efficient differentiation with high reproducibility and good viability, within a practical time frame. This study presents a full-thickness biomimetic skin equivalent fabricated by extrusion-based bioprinting. The 3D bioprinted full thickness skin model has cellular collagen dermal layer that rests on an acellular PCL/collagen scaffold, and is overlaid by sequential extrusion of bioprinted keratinocytes before airlifting for stratification and differentiation. The bioprinted skin constructs are compared with full-thickness human skin constructs produced by manual seeding of cells, in terms of cell proliferation, viability, histology, immunostaining, and barrier properties, to identify quantitative and qualitative differences. This study identifies an opportunity to streamline specific 3D bioprinting approaches to deliver full thickness reconstructed human skin in a reproducible, consistent and potentially scalable manner.
科研通智能强力驱动
Strongly Powered by AbleSci AI