A hybrid fine-tuned VMD and CNN scheme for untrained compound fault diagnosis of rotating machinery with unequal-severity faults

断层(地质) 计算机科学 卷积神经网络 故障覆盖率 模式识别(心理学) 方位(导航) 陷入故障 人工智能 故障指示器 故障检测与隔离 工程类 执行机构 电气工程 地震学 电子线路 地质学
作者
Ali Dibaj,Mir Mohammad Ettefagh,Reza Hassannejad,Mir Biuok Ehghaghi
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:167: 114094-114094 被引量:155
标识
DOI:10.1016/j.eswa.2020.114094
摘要

In the case of a compound fault diagnosis of rotating machinery, when two failures with unequal severity occur in distinct parts of the system, the detection of a minor fault is a complicated and challenging task. In this case, the minor fault is overshadowed by the more severe one, and the characteristics of the compound fault are prone to the more severe one. Generally, the proposed methods in the literature consider compound failure as an individual fault type and unrelated to the corresponding single faults, either at the different locations of a sensitive component or in two separate parts, such as the bearing and gear, with approximately the same fault severity. Considering these issues, this study proposes a novel end-to-end fault diagnosis method based on fine-tuned VMD and convolutional neural network (CNN). The main idea is that CNN is trained only on a healthy and single fault dataset, without the use of compound fault data in training. In the test stage of the CNN model, the intelligent method alarms an untrained compound fault state if acquired probabilities of CNN output satisfy a set of probabilistic conditions. The performance of the fine-tuned VMD and the proposed hybrid method is evaluated by the decomposition of a simulated vibration signal and the analysis of a gearbox system with a compound fault scenario in such a way that one fault is minor and the other severe. The results obtained show the high accuracy of the proposed method in compound fault diagnosis and the feature extraction and classification of a minor fault in the presence of a more severe one.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
munire发布了新的文献求助10
刚刚
刚刚
Orange应助loong采纳,获得10
刚刚
青黄发布了新的文献求助10
刚刚
张和云完成签到,获得积分10
1秒前
lihua完成签到,获得积分10
3秒前
羊羊羊发布了新的文献求助30
3秒前
4秒前
4秒前
zhui发布了新的文献求助10
4秒前
没有梦想发布了新的文献求助10
4秒前
Yonina发布了新的文献求助10
5秒前
5秒前
tt完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
科研专家完成签到 ,获得积分10
6秒前
JamesPei应助pomelost采纳,获得10
7秒前
迅速的宛海完成签到,获得积分10
7秒前
一位名圆发布了新的文献求助10
7秒前
7秒前
ding应助JX采纳,获得10
8秒前
玉尘完成签到,获得积分20
8秒前
9秒前
orixero应助Plutus采纳,获得10
9秒前
9秒前
Junlian发布了新的文献求助10
9秒前
10秒前
Shen发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
打打应助hhh采纳,获得10
10秒前
JQB完成签到,获得积分10
10秒前
共享精神应助单薄的忆枫采纳,获得10
11秒前
Akim应助顾年采纳,获得10
11秒前
11秒前
13秒前
13秒前
heiztcasino发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603484
求助须知:如何正确求助?哪些是违规求助? 4012177
关于积分的说明 12422449
捐赠科研通 3692673
什么是DOI,文献DOI怎么找? 2035749
邀请新用户注册赠送积分活动 1068916
科研通“疑难数据库(出版商)”最低求助积分说明 953403