A hybrid fine-tuned VMD and CNN scheme for untrained compound fault diagnosis of rotating machinery with unequal-severity faults

断层(地质) 计算机科学 卷积神经网络 故障覆盖率 模式识别(心理学) 方位(导航) 陷入故障 人工智能 故障指示器 故障检测与隔离 工程类 执行机构 电气工程 地质学 电子线路 地震学
作者
Ali Dibaj,Mir Mohammad Ettefagh,Reza Hassannejad,Mir Biuok Ehghaghi
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:167: 114094-114094 被引量:155
标识
DOI:10.1016/j.eswa.2020.114094
摘要

In the case of a compound fault diagnosis of rotating machinery, when two failures with unequal severity occur in distinct parts of the system, the detection of a minor fault is a complicated and challenging task. In this case, the minor fault is overshadowed by the more severe one, and the characteristics of the compound fault are prone to the more severe one. Generally, the proposed methods in the literature consider compound failure as an individual fault type and unrelated to the corresponding single faults, either at the different locations of a sensitive component or in two separate parts, such as the bearing and gear, with approximately the same fault severity. Considering these issues, this study proposes a novel end-to-end fault diagnosis method based on fine-tuned VMD and convolutional neural network (CNN). The main idea is that CNN is trained only on a healthy and single fault dataset, without the use of compound fault data in training. In the test stage of the CNN model, the intelligent method alarms an untrained compound fault state if acquired probabilities of CNN output satisfy a set of probabilistic conditions. The performance of the fine-tuned VMD and the proposed hybrid method is evaluated by the decomposition of a simulated vibration signal and the analysis of a gearbox system with a compound fault scenario in such a way that one fault is minor and the other severe. The results obtained show the high accuracy of the proposed method in compound fault diagnosis and the feature extraction and classification of a minor fault in the presence of a more severe one.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小巧问筠应助August采纳,获得10
1秒前
小二郎应助Camellia采纳,获得10
2秒前
3秒前
Jasper应助眼睛大谷蕊采纳,获得10
3秒前
一一应助散逸层梦游采纳,获得50
5秒前
5秒前
隐形曼青应助大雄采纳,获得10
5秒前
5秒前
6秒前
上官若男应助star采纳,获得10
6秒前
酷酷的穆完成签到,获得积分10
6秒前
Zengyuan完成签到,获得积分10
8秒前
111发布了新的文献求助10
8秒前
AA完成签到,获得积分10
9秒前
zho发布了新的文献求助10
10秒前
liu发布了新的文献求助10
10秒前
童0731发布了新的文献求助10
11秒前
season发布了新的文献求助10
11秒前
11秒前
大意的人达完成签到,获得积分10
12秒前
12秒前
wzh完成签到,获得积分10
13秒前
denise完成签到 ,获得积分10
13秒前
cjsgdsb发布了新的文献求助10
15秒前
15秒前
15秒前
SUDA完成签到,获得积分10
16秒前
武子阳完成签到 ,获得积分10
16秒前
余南完成签到,获得积分10
16秒前
崔文兴完成签到,获得积分20
17秒前
18秒前
Kindy发布了新的文献求助10
20秒前
23秒前
zho驳回了CodeCraft应助
25秒前
25秒前
金阿垚在科研完成签到,获得积分10
28秒前
Camellia发布了新的文献求助10
29秒前
完美世界应助童0731采纳,获得10
30秒前
付佳佳完成签到,获得积分10
32秒前
SciGPT应助sunshine采纳,获得10
33秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3222475
求助须知:如何正确求助?哪些是违规求助? 2871125
关于积分的说明 8173855
捐赠科研通 2538042
什么是DOI,文献DOI怎么找? 1370245
科研通“疑难数据库(出版商)”最低求助积分说明 645736
邀请新用户注册赠送积分活动 619535