A hybrid fine-tuned VMD and CNN scheme for untrained compound fault diagnosis of rotating machinery with unequal-severity faults

断层(地质) 计算机科学 卷积神经网络 故障覆盖率 模式识别(心理学) 方位(导航) 陷入故障 人工智能 故障指示器 故障检测与隔离 工程类 执行机构 电气工程 地震学 电子线路 地质学
作者
Ali Dibaj,Mir Mohammad Ettefagh,Reza Hassannejad,Mir Biuok Ehghaghi
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:167: 114094-114094 被引量:155
标识
DOI:10.1016/j.eswa.2020.114094
摘要

In the case of a compound fault diagnosis of rotating machinery, when two failures with unequal severity occur in distinct parts of the system, the detection of a minor fault is a complicated and challenging task. In this case, the minor fault is overshadowed by the more severe one, and the characteristics of the compound fault are prone to the more severe one. Generally, the proposed methods in the literature consider compound failure as an individual fault type and unrelated to the corresponding single faults, either at the different locations of a sensitive component or in two separate parts, such as the bearing and gear, with approximately the same fault severity. Considering these issues, this study proposes a novel end-to-end fault diagnosis method based on fine-tuned VMD and convolutional neural network (CNN). The main idea is that CNN is trained only on a healthy and single fault dataset, without the use of compound fault data in training. In the test stage of the CNN model, the intelligent method alarms an untrained compound fault state if acquired probabilities of CNN output satisfy a set of probabilistic conditions. The performance of the fine-tuned VMD and the proposed hybrid method is evaluated by the decomposition of a simulated vibration signal and the analysis of a gearbox system with a compound fault scenario in such a way that one fault is minor and the other severe. The results obtained show the high accuracy of the proposed method in compound fault diagnosis and the feature extraction and classification of a minor fault in the presence of a more severe one.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
ZZ发布了新的文献求助10
3秒前
小波完成签到,获得积分10
3秒前
3秒前
DT完成签到,获得积分10
3秒前
Apocalypse_zjz完成签到,获得积分10
4秒前
4秒前
叶95发布了新的文献求助10
4秒前
泡泡糖与一世安完成签到,获得积分20
5秒前
5秒前
6秒前
hhh发布了新的文献求助10
6秒前
rrfhl完成签到,获得积分10
6秒前
qaa2274278941发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
9秒前
9秒前
10秒前
高大山彤发布了新的文献求助10
11秒前
红莲墨生发布了新的文献求助10
11秒前
18关闭了18文献求助
11秒前
JamesPei应助大巧若拙采纳,获得10
11秒前
birdy发布了新的文献求助10
11秒前
12秒前
12秒前
dangpengyichuan完成签到,获得积分10
12秒前
小二郎应助沉默的尔槐采纳,获得10
13秒前
13秒前
面包康完成签到,获得积分10
13秒前
14秒前
zfg发布了新的文献求助10
14秒前
liiiii完成签到,获得积分10
14秒前
14秒前
玖若辰发布了新的文献求助10
15秒前
面包康发布了新的文献求助10
15秒前
lfzw发布了新的文献求助30
15秒前
明亮夏旋发布了新的文献求助10
16秒前
16秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974602
求助须知:如何正确求助?哪些是违规求助? 3519026
关于积分的说明 11196787
捐赠科研通 3255127
什么是DOI,文献DOI怎么找? 1797693
邀请新用户注册赠送积分活动 877100
科研通“疑难数据库(出版商)”最低求助积分说明 806130