Optimal change-point detection and localization

数学 变更检测 极小极大 估计员 分段 能量(信号处理) 参数统计 拐点 职位(财务) 点(几何) 系列(地层学) 数学优化 应用数学 统计 数学分析 几何学 计算机科学 人工智能 古生物学 财务 经济 生物
作者
Nicolas Verzélen,Magalie Fromont,Matthieu Lerasle,Patricia Reynaud-Bouret
出处
期刊:Annals of Statistics [Institute of Mathematical Statistics]
卷期号:51 (4) 被引量:13
标识
DOI:10.1214/23-aos2297
摘要

Given a times series Y in Rn, with a piecewise constant mean and independent components, the twin problems of change-point detection and change-point localization, respectively amount to detecting the existence of times where the mean varies and estimating the positions of those change-points. In this work, we tightly characterize optimal rates for both problems and uncover the phase transition phenomenon from a global testing problem to a local estimation problem. Introducing a suitable definition of the energy of a change-point, we first establish in the single change-point setting that the optimal detection threshold is 2loglog(n). When the energy is just above the detection threshold, then the problem of localizing the change-point becomes purely parametric: it only depends on the difference in means and not on the position of the change-point anymore. Interestingly, for most change-point positions, including all those away from the endpoints of the time series, it is possible to detect and localize them at a much smaller energy level. In the multiple change-point setting, we establish the energy detection threshold and show similarly that the optimal localization error of a specific change-point becomes purely parametric. Along the way, tight minimax rates for Hausdorff and l 1 estimation losses of the vector of all change-points positions are also established. Two procedures achieving these optimal rates are introduced. The first one is a least-squares estimator with a new multiscale penalty that favours well spread change-points. The second one is a two-step multiscale post-processing procedure whose computational complexity can be as low as O(nlog(n)). Notably, these two procedures accommodate with the presence of possibly many low-energy and therefore undetectable change-points and are still able to detect and localize high-energy change-points even with the presence of those nuisance parameters.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
852应助锋芒不毕露采纳,获得30
1秒前
科研通AI2S应助自由语柳采纳,获得10
1秒前
wdy发布了新的文献求助20
1秒前
Jiang发布了新的文献求助10
1秒前
大胆的厉关注了科研通微信公众号
1秒前
2秒前
2秒前
共享精神应助Zosty采纳,获得10
2秒前
猪米妮发布了新的文献求助10
3秒前
香蕉觅云应助zhangxl123采纳,获得10
3秒前
酷波er应助13333采纳,获得10
3秒前
zza应助小太阳采纳,获得10
4秒前
4秒前
守护发布了新的文献求助10
4秒前
张牧之完成签到 ,获得积分10
5秒前
多情的寻真完成签到,获得积分10
5秒前
5秒前
15940203654完成签到 ,获得积分10
5秒前
Xc完成签到,获得积分10
6秒前
LaLune发布了新的文献求助10
6秒前
传奇3应助第七个星球采纳,获得10
6秒前
6秒前
6秒前
123发布了新的文献求助10
6秒前
哈哈完成签到 ,获得积分10
6秒前
无极微光应助vidgers采纳,获得20
7秒前
二氧化碳发布了新的文献求助20
7秒前
7秒前
7秒前
8秒前
等待的小白菜完成签到,获得积分20
8秒前
111发布了新的文献求助50
9秒前
9秒前
ding应助昭昭如愿采纳,获得10
9秒前
orixero应助科研通管家采纳,获得10
9秒前
Orange应助爱听歌的蘑菇采纳,获得10
9秒前
Momomo应助科研通管家采纳,获得10
9秒前
量子星尘发布了新的文献求助10
9秒前
NexusExplorer应助科研通管家采纳,获得10
9秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699679
求助须知:如何正确求助?哪些是违规求助? 5132628
关于积分的说明 15227678
捐赠科研通 4854695
什么是DOI,文献DOI怎么找? 2604865
邀请新用户注册赠送积分活动 1556246
关于科研通互助平台的介绍 1514444