Efficient Importance Sampling in Quasi-Monte Carlo Methods for Computational Finance

数学 方差减少 稳健性(进化) 蒙特卡罗方法 维数(图论) 应用数学 高斯分布 重要性抽样 数学优化 降维 控制变量 还原(数学) 算法 计算机科学 纯数学 混合蒙特卡罗 人工智能 统计 量子力学 基因 生物化学 马尔科夫蒙特卡洛 物理 几何学 化学
作者
Chaojun Zhang,Xiaoqun Wang,Zhijian He
出处
期刊:SIAM Journal on Scientific Computing [Society for Industrial and Applied Mathematics]
卷期号:43 (1): B1-B29 被引量:9
标识
DOI:10.1137/19m1280065
摘要

We consider integration with respect to a $d$-dimensional spherical Gaussian measure arising from computational finance. Importance sampling (IS) is one of the most important variance reduction techniques in Monte Carlo (MC) methods. In this paper, two kinds of IS are studied in randomized quasi-MC (RQMC) setting, namely, the optimal drift IS (ODIS) and the Laplace IS (LapIS). Traditionally, the LapIS is obtained by mimicking the behavior of the optimal IS density with ODIS as its special case. We prove that the LapIS can also be obtained by an approximate optimization procedure based on the Laplace approximation. We study the promises and limitations of IS in RQMC methods and develop efficient RQMC-based IS procedures. We focus on how to properly combine IS with conditional MC (CMC) and dimension reduction methods in RQMC. In our procedures, the integrands are first smoothed by using CMC. Then the LapIS or the ODIS is performed, where several orthogonal matrices are required to be chosen to reduce the effective dimension. Intuitively, designing methods to determine all these optimal matrices seems infeasible. Fortunately, we prove that as long as the last orthogonal matrix is chosen elaborately, the choices of the other matrices can be arbitrary. This helps to significantly simplify the RQMC-based IS procedure. Due to the robustness and the superiority in efficiency of the gradient principal component analysis (GPCA) method, we use the GPCA method as an effective dimension reduction method in our RQMC-based IS procedures. Moreover, we prove the integrands obtained by the GPCA method are statistically equivalent. Numerical experiments illustrate the superiority of our proposed RQMC-based IS procedures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
星辰大海应助颜沛文采纳,获得10
刚刚
新一完成签到,获得积分20
刚刚
晏清发布了新的文献求助10
1秒前
星空完成签到,获得积分10
2秒前
干净馒头完成签到,获得积分10
3秒前
zxcv完成签到,获得积分10
3秒前
Ai_niyou发布了新的文献求助10
4秒前
4秒前
4秒前
Yuchaoo完成签到,获得积分10
5秒前
6秒前
pcx完成签到,获得积分10
6秒前
卡卡西应助沉默的孤兰采纳,获得30
6秒前
新一发布了新的文献求助30
7秒前
聪明的勒发布了新的文献求助10
8秒前
科目三应助晏清采纳,获得10
8秒前
wenjing发布了新的文献求助20
8秒前
9秒前
隐形曼青应助mingpu采纳,获得10
9秒前
量子星尘发布了新的文献求助10
9秒前
烟花应助勇哥你好采纳,获得10
10秒前
10秒前
火山羊完成签到,获得积分10
10秒前
颜沛文发布了新的文献求助10
11秒前
12秒前
13秒前
轻松小之发布了新的文献求助10
13秒前
nightmare发布了新的文献求助10
13秒前
14秒前
领导范儿应助11采纳,获得10
15秒前
华桦子完成签到 ,获得积分10
16秒前
啦啦啦发布了新的文献求助30
17秒前
hh完成签到,获得积分10
18秒前
18秒前
善学以致用应助nightmare采纳,获得10
18秒前
Hello应助科研通管家采纳,获得10
19秒前
yizhiGao应助科研通管家采纳,获得10
20秒前
思源应助科研通管家采纳,获得10
20秒前
研友_nEowP8发布了新的文献求助10
20秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Treatise on Geochemistry 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954728
求助须知:如何正确求助?哪些是违规求助? 3500844
关于积分的说明 11101288
捐赠科研通 3231320
什么是DOI,文献DOI怎么找? 1786401
邀请新用户注册赠送积分活动 870028
科研通“疑难数据库(出版商)”最低求助积分说明 801771