亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

SubLocEP: a novel ensemble predictor of subcellular localization of eukaryotic mRNA based on machine learning

一般化 计算机科学 特征(语言学) 人工智能 序列(生物学) 翻译(生物学) 机器学习 数据挖掘 模式识别(心理学) 信使核糖核酸 数学 基因 生物 数学分析 哲学 语言学 生物化学 遗传学
作者
Jing Li,Lichao Zhang,He Shida,Fei Guo,Quan Zou
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:22 (5) 被引量:12
标识
DOI:10.1093/bib/bbaa401
摘要

mRNA location corresponds to the location of protein translation and contributes to precise spatial and temporal management of the protein function. However, current assignment of subcellular localization of eukaryotic mRNA reveals important limitations: (1) turning multiple classifications into multiple dichotomies makes the training process tedious; (2) the majority of the models trained by classical algorithm are based on the extraction of single sequence information; (3) the existing state-of-the-art models have not reached an ideal level in terms of prediction and generalization ability. To achieve better assignment of subcellular localization of eukaryotic mRNA, a better and more comprehensive model must be developed.In this paper, SubLocEP is proposed as a two-layer integrated prediction model for accurate prediction of the location of sequence samples. Unlike the existing models based on limited features, SubLocEP comprehensively considers additional feature attributes and is combined with LightGBM to generated single feature classifiers. The initial integration model (single-layer model) is generated according to the categories of a feature. Subsequently, two single-layer integration models are weighted (sequence-based: physicochemical properties = 3:2) to produce the final two-layer model. The performance of SubLocEP on independent datasets is sufficient to indicate that SubLocEP is an accurate and stable prediction model with strong generalization ability. Additionally, an online tool has been developed that contains experimental data and can maximize the user convenience for estimation of subcellular localization of eukaryotic mRNA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
简qiu发布了新的文献求助10
2秒前
4秒前
ZD完成签到 ,获得积分10
7秒前
8秒前
13秒前
17秒前
20秒前
fouli完成签到,获得积分10
22秒前
wang5945发布了新的文献求助10
24秒前
25秒前
YifanWang应助三更笔舞采纳,获得10
25秒前
周辉完成签到,获得积分20
26秒前
29秒前
30秒前
hgzz完成签到 ,获得积分10
32秒前
小巧的柏柳完成签到 ,获得积分10
34秒前
45秒前
51秒前
51秒前
天才7发布了新的文献求助10
51秒前
qcck完成签到,获得积分10
52秒前
58秒前
WZM完成签到 ,获得积分10
59秒前
桃子完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
Frank应助科研通管家采纳,获得50
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
Ava应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
慕青应助科研通管家采纳,获得10
1分钟前
寻道图强应助科研通管家采纳,获得30
1分钟前
称心梦之发布了新的文献求助10
1分钟前
1分钟前
搜集达人应助alien52采纳,获得10
1分钟前
起风了完成签到 ,获得积分10
1分钟前
JavedAli完成签到,获得积分10
1分钟前
1分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150492
求助须知:如何正确求助?哪些是违规求助? 2801847
关于积分的说明 7845829
捐赠科研通 2459207
什么是DOI,文献DOI怎么找? 1309091
科研通“疑难数据库(出版商)”最低求助积分说明 628638
版权声明 601727