Device-Free Human Gesture Recognition With Generative Adversarial Networks

计算机科学 试验台 手势 利用 手势识别 集合(抽象数据类型) 人工智能 人机交互 无线 无线网络 样品(材料) 网络体系结构 生成语法 机器学习 计算机网络 电信 色谱法 化学 程序设计语言 计算机安全
作者
Jie Wang,Liang Zhang,Changcheng Wang,Xiaorui Ma,Qinghua Gao,Bin Lin
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:7 (8): 7678-7688 被引量:37
标识
DOI:10.1109/jiot.2020.2988291
摘要

Recent advances in device-free wireless sensing have created the emerging technique of device-free human gesture recognition (DFHGR), which could recognize human gestures by analyzing their shadowing effect on surrounding wireless signals. DFHGR has many potential applications in the fields of human-machine interaction, smart home, intelligent space, etc. State-of-the-art work has achieved satisfactory recognition accuracy when there are a sufficient number of training samples. However, it is time consuming and labor intensive to collect samples, thus how to realize DFHGR under a small training sample set becomes an urgent problem to solve. Motivated by the excellent ability of the generative adversarial network in synthesizing samples, in this article, we explore and exploit the idea of leveraging it to realize virtual samples augmentation. Specifically, we first design a single scenario network with new architecture and better-designed loss function to generate virtual samples using a few number of real samples. Then, we further develop a scenario transferring network to generate virtual samples by utilizing the real samples not only from the current scenario but also from another available scenario as well, which could improve the quality of synthesized samples with the extra knowledge learned from another scenario. We design an mmWave-based DFHGR testbed to test the proposed networks, extensive experimental results demonstrate that the augmented virtual samples are of high quality and facilitate DFHGR systems to achieve better accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
凌晨一点的莱茵猫完成签到,获得积分10
1秒前
1秒前
1秒前
Zx_1993应助ss采纳,获得10
1秒前
syx发布了新的文献求助10
1秒前
1秒前
cff完成签到,获得积分10
1秒前
Xuan_Y完成签到,获得积分10
2秒前
情怀应助157295108采纳,获得10
2秒前
物理师z发布了新的文献求助10
2秒前
2秒前
ccc完成签到,获得积分10
2秒前
3秒前
qww完成签到,获得积分10
3秒前
无敌暴龙战神完成签到,获得积分10
4秒前
风清扬发布了新的文献求助10
4秒前
斯文败类应助邱洪晓采纳,获得10
4秒前
5秒前
1900完成签到,获得积分10
5秒前
涛声依旧发布了新的文献求助10
5秒前
科研式发布了新的文献求助10
6秒前
uu完成签到 ,获得积分10
6秒前
深情安青应助抽纸盒采纳,获得10
6秒前
眼睛大的黑猫完成签到,获得积分10
6秒前
7秒前
wanci应助bing采纳,获得10
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
一念初见发布了新的文献求助10
8秒前
水水的橙子完成签到,获得积分10
9秒前
充电宝应助ddddd采纳,获得10
9秒前
9秒前
李盛男完成签到,获得积分10
9秒前
罗玉完成签到,获得积分10
9秒前
qilin发布了新的文献求助10
10秒前
彭于晏应助niko采纳,获得10
10秒前
h41692011完成签到 ,获得积分10
10秒前
10秒前
伟蓓1314发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5512346
求助须知:如何正确求助?哪些是违规求助? 4606639
关于积分的说明 14500751
捐赠科研通 4542109
什么是DOI,文献DOI怎么找? 2488840
邀请新用户注册赠送积分活动 1470931
关于科研通互助平台的介绍 1443123