亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Device-Free Human Gesture Recognition With Generative Adversarial Networks

计算机科学 试验台 手势 利用 手势识别 集合(抽象数据类型) 人工智能 人机交互 无线 无线网络 样品(材料) 网络体系结构 生成语法 机器学习 计算机网络 电信 色谱法 化学 程序设计语言 计算机安全
作者
Jie Wang,Liang Zhang,Changcheng Wang,Xiaorui Ma,Qinghua Gao,Bin Lin
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:7 (8): 7678-7688 被引量:37
标识
DOI:10.1109/jiot.2020.2988291
摘要

Recent advances in device-free wireless sensing have created the emerging technique of device-free human gesture recognition (DFHGR), which could recognize human gestures by analyzing their shadowing effect on surrounding wireless signals. DFHGR has many potential applications in the fields of human-machine interaction, smart home, intelligent space, etc. State-of-the-art work has achieved satisfactory recognition accuracy when there are a sufficient number of training samples. However, it is time consuming and labor intensive to collect samples, thus how to realize DFHGR under a small training sample set becomes an urgent problem to solve. Motivated by the excellent ability of the generative adversarial network in synthesizing samples, in this article, we explore and exploit the idea of leveraging it to realize virtual samples augmentation. Specifically, we first design a single scenario network with new architecture and better-designed loss function to generate virtual samples using a few number of real samples. Then, we further develop a scenario transferring network to generate virtual samples by utilizing the real samples not only from the current scenario but also from another available scenario as well, which could improve the quality of synthesized samples with the extra knowledge learned from another scenario. We design an mmWave-based DFHGR testbed to test the proposed networks, extensive experimental results demonstrate that the augmented virtual samples are of high quality and facilitate DFHGR systems to achieve better accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
duan完成签到 ,获得积分10
2秒前
maclogos完成签到,获得积分10
3秒前
15秒前
25秒前
雨城完成签到 ,获得积分10
42秒前
mrjohn完成签到,获得积分0
55秒前
1分钟前
丘比特应助doublenine18采纳,获得30
1分钟前
wwww威完成签到,获得积分10
1分钟前
YHF2发布了新的文献求助10
1分钟前
YHF2完成签到,获得积分10
1分钟前
1分钟前
doublenine18发布了新的文献求助30
1分钟前
1分钟前
李丹阳完成签到,获得积分10
2分钟前
Criminology34举报zz求助涉嫌违规
2分钟前
2分钟前
Bin_Liu发布了新的文献求助10
2分钟前
2分钟前
2分钟前
科研通AI6应助风华正茂采纳,获得10
2分钟前
2分钟前
橘橘橘子皮完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
布吉岛呀完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
4分钟前
4分钟前
4分钟前
风华正茂发布了新的文献求助10
4分钟前
deng203完成签到,获得积分10
4分钟前
4分钟前
Bin_Liu完成签到,获得积分20
4分钟前
量子星尘发布了新的文献求助10
4分钟前
潘小嘎完成签到 ,获得积分10
4分钟前
sswy完成签到 ,获得积分10
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639678
求助须知:如何正确求助?哪些是违规求助? 4749674
关于积分的说明 15007074
捐赠科研通 4797837
什么是DOI,文献DOI怎么找? 2563943
邀请新用户注册赠送积分活动 1522817
关于科研通互助平台的介绍 1482514