Device-Free Human Gesture Recognition With Generative Adversarial Networks

计算机科学 试验台 手势 利用 手势识别 集合(抽象数据类型) 人工智能 人机交互 无线 无线网络 样品(材料) 网络体系结构 生成语法 机器学习 计算机网络 电信 色谱法 化学 程序设计语言 计算机安全
作者
Jie Wang,Liang Zhang,Changcheng Wang,Xiaorui Ma,Qinghua Gao,Bin Lin
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:7 (8): 7678-7688 被引量:37
标识
DOI:10.1109/jiot.2020.2988291
摘要

Recent advances in device-free wireless sensing have created the emerging technique of device-free human gesture recognition (DFHGR), which could recognize human gestures by analyzing their shadowing effect on surrounding wireless signals. DFHGR has many potential applications in the fields of human-machine interaction, smart home, intelligent space, etc. State-of-the-art work has achieved satisfactory recognition accuracy when there are a sufficient number of training samples. However, it is time consuming and labor intensive to collect samples, thus how to realize DFHGR under a small training sample set becomes an urgent problem to solve. Motivated by the excellent ability of the generative adversarial network in synthesizing samples, in this article, we explore and exploit the idea of leveraging it to realize virtual samples augmentation. Specifically, we first design a single scenario network with new architecture and better-designed loss function to generate virtual samples using a few number of real samples. Then, we further develop a scenario transferring network to generate virtual samples by utilizing the real samples not only from the current scenario but also from another available scenario as well, which could improve the quality of synthesized samples with the extra knowledge learned from another scenario. We design an mmWave-based DFHGR testbed to test the proposed networks, extensive experimental results demonstrate that the augmented virtual samples are of high quality and facilitate DFHGR systems to achieve better accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zz完成签到,获得积分10
刚刚
susu完成签到,获得积分10
2秒前
香蕉觅云应助嘞是举仔采纳,获得10
2秒前
4秒前
木子木子吱吱完成签到,获得积分10
4秒前
susu发布了新的文献求助30
5秒前
蔡忠英发布了新的文献求助10
6秒前
迷路访云完成签到,获得积分10
6秒前
7秒前
8秒前
BetterH完成签到 ,获得积分10
8秒前
无花果应助wow采纳,获得10
8秒前
wanci应助7iy采纳,获得10
9秒前
loong发布了新的文献求助10
13秒前
深情安青应助白桦林泪采纳,获得10
13秒前
15秒前
米米米完成签到 ,获得积分10
17秒前
JX完成签到 ,获得积分10
18秒前
19秒前
19秒前
锅包肉完成签到 ,获得积分10
19秒前
华仔应助loong采纳,获得10
20秒前
wow发布了新的文献求助10
21秒前
包容的鞋垫完成签到,获得积分10
22秒前
bkagyin应助congenialboy采纳,获得10
22秒前
搜集达人应助刘林美采纳,获得10
23秒前
张瑞雪完成签到 ,获得积分10
23秒前
hanshu发布了新的文献求助10
24秒前
26秒前
wow完成签到,获得积分10
27秒前
28秒前
牢孙完成签到,获得积分10
31秒前
嘞是举仔发布了新的文献求助10
32秒前
蔡忠英完成签到,获得积分10
33秒前
酷波er应助风车采纳,获得10
33秒前
CipherSage应助壹介草莽采纳,获得10
36秒前
PSQ完成签到,获得积分10
37秒前
37秒前
37秒前
38秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989711
求助须知:如何正确求助?哪些是违规求助? 3531864
关于积分的说明 11255235
捐赠科研通 3270505
什么是DOI,文献DOI怎么找? 1804983
邀请新用户注册赠送积分活动 882157
科研通“疑难数据库(出版商)”最低求助积分说明 809176