Reciprocal Regulation of Mitochondrial Fission and Fusion

裂变 线粒体分裂 线粒体 互惠的 线粒体融合 融合 线粒体DNA 生物 细胞生物学 化学 物理 遗传学 核物理学 基因 中子 哲学 语言学
作者
Rasha Sabouny,Timothy E. Shutt
出处
期刊:Trends in Biochemical Sciences [Elsevier]
卷期号:45 (7): 564-577 被引量:163
标识
DOI:10.1016/j.tibs.2020.03.009
摘要

Mitochondria are dynamic organelles constantly undergoing fusion and fission events. The morphology of the mitochondrial network is determined by the balance between fusion and fission events. Changes in mitochondrial morphology facilitate the integration of mitochondrial function with physiological changes in the cell. Hyperfused mitochondrial networks can be due to increased fusion and/or decreased fission. Fragmented mitochondrial networks can be a result of either more fission and/or reduced fusion. An emerging trend in mitochondrial network remodeling is the reciprocal regulation of fission and fusion, where regulatory pathways influence both processes. The dynamic processes of mitochondrial fission and fusion are tightly regulated, determine mitochondrial shape, and influence mitochondrial functions. For example, fission and fusion mediate energy output, production of reactive oxygen species (ROS), and mitochondrial quality control. As our understanding of the molecular machinery and mechanisms regulating dynamic changes in the mitochondrial network continues to grow, we are beginning to unravel important signaling pathways that integrate physiological cues to modulate mitochondrial morphology and function. Here, we highlight reciprocal regulation of mitochondrial fusion and fission as an emerging trend in the regulation of mitochondrial function. The dynamic processes of mitochondrial fission and fusion are tightly regulated, determine mitochondrial shape, and influence mitochondrial functions. For example, fission and fusion mediate energy output, production of reactive oxygen species (ROS), and mitochondrial quality control. As our understanding of the molecular machinery and mechanisms regulating dynamic changes in the mitochondrial network continues to grow, we are beginning to unravel important signaling pathways that integrate physiological cues to modulate mitochondrial morphology and function. Here, we highlight reciprocal regulation of mitochondrial fusion and fission as an emerging trend in the regulation of mitochondrial function. proteolytic core of the proteasome, which can degrade oxidized proteins and proteins with intrinsically unstructured domains in a ubiquitin-independent manner. comprises the 20S proteolytic core, responsible for degrading proteins, which is capped with the 19S regulatory complex, responsible for recognizing ubiquitinated substrates. PTM that involves the addition of an acetyl group to specific lysine residues on target proteins. nonbilayer-forming mitochondrial phospholipid found primarily in the IMM. mitochondrial inner membrane invaginations; remodeling cristae morphology influences mitochondrial energetic output and susceptibility to apoptosis. mitochondrial genome; 16.6 kb circular genome present in 100–1000 copies per cell, encoding 13 mitochondrial proteins, two mitochondrial ribosomal RNAs, and 22 transfer RNAs. removal of dysfunctional mitochondria via autophagy. PTM that is dependent on nutrient availability and involves the addition of O-GlcNAc to target proteins by O-GlcNAc transferase. an oxidative environment that is the result increased production or accumulation of ROS. nonbilayer-forming phospholipid that promotes membrane curvature; important CL precursor. PTM that involves the reversible addition of phosphate to tyrosine, threonine, or serine residues on target proteins by a protein kinase. highly reactive compounds produced during mitochondrial respiration, such as superoxide, hydrogen peroxide, and hydroxyl radicals; ROS are important for retrograde cellular signaling; however, high levels of ROS can damage proteins, DNA, and lipids. mode of cellular communication where ROS propagate important information that modulates cellular function. formation of cytoprotective hyperfused mitochondrial networks in response to acute stress stimuli (e.g., oxidative stress, cycloheximide, UV irradiation, and nutrient starvation). PTM that involves addition of small ubiquitin-like modifier (SUMO) moieties to target proteins by SUMO ligases; SUMO modifications can promote protein stability and functional interactions. PTM that involves covalent addition of ubiquitin (Ub) (a 76-amino acid polypeptide) to specific lysine residues on target proteins by Ub ligases; poly-ub chains typically promote protein degradation by the 26S proteasome, and mono-ub can promote protein–protein interactions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
慕青应助zhaoshasha采纳,获得10
刚刚
喜乐多完成签到 ,获得积分10
1秒前
吴五五发布了新的文献求助10
1秒前
奋斗瑶完成签到,获得积分10
1秒前
蓝桉发布了新的文献求助10
1秒前
傲公子发布了新的文献求助10
1秒前
Hua完成签到 ,获得积分10
2秒前
2秒前
诚心邑应助李某月采纳,获得10
2秒前
2秒前
小李完成签到,获得积分10
3秒前
Lenacici完成签到,获得积分10
3秒前
善学以致用应助ffx采纳,获得10
3秒前
3秒前
28551完成签到,获得积分10
4秒前
4秒前
wbj0722完成签到,获得积分10
4秒前
5秒前
开朗的鞋子完成签到,获得积分10
5秒前
NexusExplorer应助p二采纳,获得10
5秒前
田様应助wsx采纳,获得30
6秒前
FashionBoy应助dada采纳,获得10
6秒前
lee完成签到,获得积分10
6秒前
小板凳完成签到,获得积分10
6秒前
6秒前
狼洪明完成签到,获得积分10
6秒前
文良颜丑完成签到,获得积分10
6秒前
研友_LpvElZ完成签到,获得积分10
6秒前
帅气的襄发布了新的文献求助10
7秒前
7秒前
7秒前
小颗粒发布了新的文献求助100
7秒前
7秒前
琪哒完成签到 ,获得积分10
8秒前
8秒前
111完成签到,获得积分10
8秒前
mysci完成签到,获得积分10
8秒前
林白完成签到,获得积分10
8秒前
小粽子发布了新的文献求助10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
The Laschia-complex (Basidiomycetes) 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
Conference Record, IAS Annual Meeting 1977 510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3539716
求助须知:如何正确求助?哪些是违规求助? 3117409
关于积分的说明 9330549
捐赠科研通 2815092
什么是DOI,文献DOI怎么找? 1547441
邀请新用户注册赠送积分活动 720908
科研通“疑难数据库(出版商)”最低求助积分说明 712354