DLFF-ACP: prediction of ACPs based on deep learning and multi-view features fusion

计算机科学 人工智能 融合 卷积神经网络 模式识别(心理学) 试验装置 集合(抽象数据类型) 人工神经网络 特征(语言学) 过程(计算) 深度学习 机器学习 编码(集合论) 源代码 数据挖掘 哲学 程序设计语言 操作系统 语言学
作者
Ruifen Cao,Meng Wang,Yannan Bin,Chun-Hou Zheng
出处
期刊:PeerJ [PeerJ]
卷期号:9: e11906-e11906 被引量:10
标识
DOI:10.7717/peerj.11906
摘要

An emerging type of therapeutic agent, anticancer peptides (ACPs), has attracted attention because of its lower risk of toxic side effects. However process of identifying ACPs using experimental methods is both time-consuming and laborious. In this study, we developed a new and efficient algorithm that predicts ACPs by fusing multi-view features based on dual-channel deep neural network ensemble model. In the model, one channel used the convolutional neural network CNN to automatically extract the potential spatial features of a sequence. Another channel was used to process and extract more effective features from handcrafted features. Additionally, an effective feature fusion method was explored for the mutual fusion of different features. Finally, we adopted the neural network to predict ACPs based on the fusion features. The performance comparisons across the single and fusion features showed that the fusion of multi-view features could effectively improve the model’s predictive ability. Among these, the fusion of the features extracted by the CNN and composition of k-spaced amino acid group pairs achieved the best performance. To further validate the performance of our model, we compared it with other existing methods using two independent test sets. The results showed that our model’s area under curve was 0.90, which was higher than that of the other existing methods on the first test set and higher than most of the other existing methods on the second test set. The source code and datasets are available at https://github.com/wame-ng/DLFF-ACP .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
czm完成签到,获得积分10
1秒前
嗯哼发布了新的文献求助10
1秒前
1秒前
1秒前
uuuuu完成签到,获得积分10
2秒前
彭于晏应助核桃采纳,获得30
2秒前
2秒前
Jasper应助核桃采纳,获得10
2秒前
2秒前
Akim应助核桃采纳,获得10
2秒前
脑洞疼应助核桃采纳,获得30
2秒前
上官若男应助核桃采纳,获得10
3秒前
科研通AI6应助核桃采纳,获得10
3秒前
我是老大应助核桃采纳,获得10
3秒前
Fortune应助核桃采纳,获得10
3秒前
3秒前
3秒前
3秒前
嘿嘿应助勇者小超人采纳,获得30
3秒前
火儿完成签到,获得积分10
4秒前
cincincin完成签到,获得积分10
4秒前
壮观的冰双完成签到,获得积分10
4秒前
爆米花应助盒子采纳,获得10
4秒前
4秒前
4秒前
5秒前
PFD000发布了新的文献求助20
6秒前
Zzziihao完成签到,获得积分10
6秒前
崔昕雨发布了新的文献求助10
6秒前
浮游应助小三花妙妙采纳,获得10
6秒前
6秒前
7秒前
7秒前
123发布了新的文献求助10
8秒前
咚咚发布了新的文献求助10
8秒前
打打应助nyzcc采纳,获得10
8秒前
8秒前
狡猾的菠萝完成签到 ,获得积分10
8秒前
传奇3应助摆烂昊采纳,获得10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5512432
求助须知:如何正确求助?哪些是违规求助? 4606873
关于积分的说明 14501499
捐赠科研通 4542174
什么是DOI,文献DOI怎么找? 2488952
邀请新用户注册赠送积分活动 1470999
关于科研通互助平台的介绍 1443152