亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

DLFF-ACP: prediction of ACPs based on deep learning and multi-view features fusion

计算机科学 人工智能 融合 卷积神经网络 模式识别(心理学) 试验装置 集合(抽象数据类型) 人工神经网络 特征(语言学) 过程(计算) 深度学习 机器学习 编码(集合论) 源代码 数据挖掘 哲学 程序设计语言 操作系统 语言学
作者
Ruifen Cao,Meng Wang,Yannan Bin,Chun-Hou Zheng
出处
期刊:PeerJ [PeerJ]
卷期号:9: e11906-e11906 被引量:10
标识
DOI:10.7717/peerj.11906
摘要

An emerging type of therapeutic agent, anticancer peptides (ACPs), has attracted attention because of its lower risk of toxic side effects. However process of identifying ACPs using experimental methods is both time-consuming and laborious. In this study, we developed a new and efficient algorithm that predicts ACPs by fusing multi-view features based on dual-channel deep neural network ensemble model. In the model, one channel used the convolutional neural network CNN to automatically extract the potential spatial features of a sequence. Another channel was used to process and extract more effective features from handcrafted features. Additionally, an effective feature fusion method was explored for the mutual fusion of different features. Finally, we adopted the neural network to predict ACPs based on the fusion features. The performance comparisons across the single and fusion features showed that the fusion of multi-view features could effectively improve the model’s predictive ability. Among these, the fusion of the features extracted by the CNN and composition of k-spaced amino acid group pairs achieved the best performance. To further validate the performance of our model, we compared it with other existing methods using two independent test sets. The results showed that our model’s area under curve was 0.90, which was higher than that of the other existing methods on the first test set and higher than most of the other existing methods on the second test set. The source code and datasets are available at https://github.com/wame-ng/DLFF-ACP .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
金金完成签到 ,获得积分10
4秒前
坦率的语芙完成签到,获得积分10
11秒前
善学以致用应助帅气书白采纳,获得10
14秒前
15秒前
18秒前
21秒前
七面东风完成签到,获得积分10
22秒前
科研通AI6应助neko采纳,获得10
26秒前
29秒前
侯锐淇完成签到 ,获得积分10
32秒前
34秒前
xiaowang发布了新的文献求助10
35秒前
moodlunatic发布了新的文献求助30
40秒前
qiuzhu_完成签到 ,获得积分10
45秒前
xiaowang完成签到,获得积分10
45秒前
ceeray23发布了新的文献求助20
45秒前
Hello应助小杨采纳,获得10
46秒前
123456完成签到,获得积分10
51秒前
moodlunatic完成签到,获得积分10
52秒前
54秒前
123456发布了新的文献求助20
55秒前
清爽冬莲完成签到 ,获得积分0
1分钟前
1分钟前
qiuzhu_发布了新的文献求助10
1分钟前
1分钟前
鲤鱼发布了新的文献求助10
1分钟前
Yiyong发布了新的文献求助20
1分钟前
1分钟前
1分钟前
科研通AI6应助古兰采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
Nickzzz发布了新的文献求助10
1分钟前
甜美的沅完成签到 ,获得积分10
1分钟前
失眠的稀发布了新的文献求助10
1分钟前
1分钟前
倷倷完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5554672
求助须知:如何正确求助?哪些是违规求助? 4639324
关于积分的说明 14655924
捐赠科研通 4581173
什么是DOI,文献DOI怎么找? 2512637
邀请新用户注册赠送积分活动 1487389
关于科研通互助平台的介绍 1458262