DLFF-ACP: prediction of ACPs based on deep learning and multi-view features fusion

计算机科学 人工智能 融合 卷积神经网络 模式识别(心理学) 试验装置 集合(抽象数据类型) 人工神经网络 特征(语言学) 过程(计算) 深度学习 机器学习 编码(集合论) 源代码 数据挖掘 哲学 程序设计语言 操作系统 语言学
作者
Ruifen Cao,Meng Wang,Yannan Bin,Chun-Hou Zheng
出处
期刊:PeerJ [PeerJ]
卷期号:9: e11906-e11906 被引量:10
标识
DOI:10.7717/peerj.11906
摘要

An emerging type of therapeutic agent, anticancer peptides (ACPs), has attracted attention because of its lower risk of toxic side effects. However process of identifying ACPs using experimental methods is both time-consuming and laborious. In this study, we developed a new and efficient algorithm that predicts ACPs by fusing multi-view features based on dual-channel deep neural network ensemble model. In the model, one channel used the convolutional neural network CNN to automatically extract the potential spatial features of a sequence. Another channel was used to process and extract more effective features from handcrafted features. Additionally, an effective feature fusion method was explored for the mutual fusion of different features. Finally, we adopted the neural network to predict ACPs based on the fusion features. The performance comparisons across the single and fusion features showed that the fusion of multi-view features could effectively improve the model’s predictive ability. Among these, the fusion of the features extracted by the CNN and composition of k-spaced amino acid group pairs achieved the best performance. To further validate the performance of our model, we compared it with other existing methods using two independent test sets. The results showed that our model’s area under curve was 0.90, which was higher than that of the other existing methods on the first test set and higher than most of the other existing methods on the second test set. The source code and datasets are available at https://github.com/wame-ng/DLFF-ACP .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助Soho采纳,获得10
1秒前
1秒前
2秒前
王虎彪完成签到,获得积分20
3秒前
4秒前
达鸟啊发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
6秒前
Jasperlee完成签到 ,获得积分10
9秒前
风清扬发布了新的文献求助10
9秒前
10秒前
hhhhhhh发布了新的文献求助10
11秒前
12秒前
gugugu完成签到,获得积分10
12秒前
李爱国应助MacD采纳,获得10
14秒前
14秒前
14秒前
研友_n0WgDL发布了新的文献求助10
15秒前
李先生完成签到 ,获得积分10
15秒前
光亮的秋白完成签到 ,获得积分10
15秒前
zmzm完成签到,获得积分20
16秒前
合适怡完成签到,获得积分10
17秒前
zhzhzh发布了新的文献求助10
17秒前
辰昜完成签到,获得积分10
18秒前
隐形曼青应助蔡蔡采纳,获得10
18秒前
huang完成签到,获得积分10
19秒前
19秒前
20秒前
大力可燕发布了新的文献求助10
20秒前
科研通AI2S应助Mia采纳,获得30
20秒前
llll完成签到,获得积分10
20秒前
xunxunmimi完成签到,获得积分10
22秒前
22秒前
22秒前
23秒前
猫七发布了新的文献求助10
23秒前
Akim应助等乙天采纳,获得10
24秒前
猫七发布了新的文献求助10
24秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536747
求助须知:如何正确求助?哪些是违规求助? 4624321
关于积分的说明 14591612
捐赠科研通 4564876
什么是DOI,文献DOI怎么找? 2501995
邀请新用户注册赠送积分活动 1480690
关于科研通互助平台的介绍 1451972