DLFF-ACP: prediction of ACPs based on deep learning and multi-view features fusion

计算机科学 人工智能 融合 卷积神经网络 模式识别(心理学) 试验装置 集合(抽象数据类型) 人工神经网络 特征(语言学) 过程(计算) 深度学习 机器学习 编码(集合论) 源代码 数据挖掘 哲学 程序设计语言 操作系统 语言学
作者
Ruifen Cao,Meng Wang,Yannan Bin,Chun-Hou Zheng
出处
期刊:PeerJ [PeerJ, Inc.]
卷期号:9: e11906-e11906 被引量:10
标识
DOI:10.7717/peerj.11906
摘要

An emerging type of therapeutic agent, anticancer peptides (ACPs), has attracted attention because of its lower risk of toxic side effects. However process of identifying ACPs using experimental methods is both time-consuming and laborious. In this study, we developed a new and efficient algorithm that predicts ACPs by fusing multi-view features based on dual-channel deep neural network ensemble model. In the model, one channel used the convolutional neural network CNN to automatically extract the potential spatial features of a sequence. Another channel was used to process and extract more effective features from handcrafted features. Additionally, an effective feature fusion method was explored for the mutual fusion of different features. Finally, we adopted the neural network to predict ACPs based on the fusion features. The performance comparisons across the single and fusion features showed that the fusion of multi-view features could effectively improve the model’s predictive ability. Among these, the fusion of the features extracted by the CNN and composition of k-spaced amino acid group pairs achieved the best performance. To further validate the performance of our model, we compared it with other existing methods using two independent test sets. The results showed that our model’s area under curve was 0.90, which was higher than that of the other existing methods on the first test set and higher than most of the other existing methods on the second test set. The source code and datasets are available at https://github.com/wame-ng/DLFF-ACP .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
doclv完成签到,获得积分10
2秒前
周博发布了新的文献求助10
3秒前
田様应助鲤鱼越越采纳,获得10
3秒前
lenetivy发布了新的文献求助10
6秒前
6秒前
山与关注了科研通微信公众号
7秒前
7秒前
汉堡包应助科研通管家采纳,获得10
10秒前
英俊的铭应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
xiaolei001应助uiui采纳,获得10
11秒前
salan应助科研通管家采纳,获得50
11秒前
无极微光应助科研通管家采纳,获得20
11秒前
小马甲应助科研通管家采纳,获得10
11秒前
上官若男应助科研通管家采纳,获得10
11秒前
阿吉泰应助科研通管家采纳,获得10
11秒前
jopaul完成签到,获得积分10
11秒前
11秒前
烟花应助科研通管家采纳,获得10
11秒前
大模型应助科研通管家采纳,获得10
12秒前
领导范儿应助科研通管家采纳,获得10
12秒前
应景的雨完成签到,获得积分10
12秒前
我是老大应助科研通管家采纳,获得10
12秒前
完美世界应助科研通管家采纳,获得10
12秒前
danli应助科研通管家采纳,获得10
12秒前
斯文败类应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
12秒前
清风完成签到,获得积分10
14秒前
15秒前
独特的雁桃完成签到,获得积分10
16秒前
隐形曼青应助您得疼采纳,获得10
18秒前
高高友易发布了新的文献求助10
19秒前
沉静的煎蛋完成签到 ,获得积分10
19秒前
田様应助刘玉玲采纳,获得30
21秒前
22秒前
彭于晏应助帅的过分采纳,获得10
22秒前
郭通发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4971793
求助须知:如何正确求助?哪些是违规求助? 4228053
关于积分的说明 13168320
捐赠科研通 4016015
什么是DOI,文献DOI怎么找? 2197709
邀请新用户注册赠送积分活动 1210607
关于科研通互助平台的介绍 1125059