DLFF-ACP: prediction of ACPs based on deep learning and multi-view features fusion

计算机科学 人工智能 融合 卷积神经网络 模式识别(心理学) 试验装置 集合(抽象数据类型) 人工神经网络 特征(语言学) 过程(计算) 深度学习 机器学习 编码(集合论) 源代码 数据挖掘 哲学 程序设计语言 操作系统 语言学
作者
Ruifen Cao,Meng Wang,Yannan Bin,Chun-Hou Zheng
出处
期刊:PeerJ [PeerJ]
卷期号:9: e11906-e11906 被引量:10
标识
DOI:10.7717/peerj.11906
摘要

An emerging type of therapeutic agent, anticancer peptides (ACPs), has attracted attention because of its lower risk of toxic side effects. However process of identifying ACPs using experimental methods is both time-consuming and laborious. In this study, we developed a new and efficient algorithm that predicts ACPs by fusing multi-view features based on dual-channel deep neural network ensemble model. In the model, one channel used the convolutional neural network CNN to automatically extract the potential spatial features of a sequence. Another channel was used to process and extract more effective features from handcrafted features. Additionally, an effective feature fusion method was explored for the mutual fusion of different features. Finally, we adopted the neural network to predict ACPs based on the fusion features. The performance comparisons across the single and fusion features showed that the fusion of multi-view features could effectively improve the model’s predictive ability. Among these, the fusion of the features extracted by the CNN and composition of k-spaced amino acid group pairs achieved the best performance. To further validate the performance of our model, we compared it with other existing methods using two independent test sets. The results showed that our model’s area under curve was 0.90, which was higher than that of the other existing methods on the first test set and higher than most of the other existing methods on the second test set. The source code and datasets are available at https://github.com/wame-ng/DLFF-ACP .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
傅傅发布了新的文献求助10
1秒前
龙仔子发布了新的文献求助10
1秒前
Liuzihao完成签到,获得积分10
1秒前
xing完成签到,获得积分20
1秒前
1秒前
2秒前
Zx_1993应助jf采纳,获得10
2秒前
2秒前
照相机完成签到,获得积分10
2秒前
2秒前
2秒前
鹏1989发布了新的文献求助10
3秒前
3秒前
Lenna45发布了新的文献求助10
3秒前
存封完成签到,获得积分10
4秒前
慕青应助李天浩采纳,获得20
4秒前
5秒前
SLime发布了新的文献求助10
5秒前
5秒前
5秒前
多情高丽发布了新的文献求助10
6秒前
wlscj应助ZhouLu采纳,获得20
6秒前
吉田清子发布了新的文献求助10
6秒前
xing发布了新的文献求助10
6秒前
Sam发布了新的文献求助10
7秒前
8秒前
YY发布了新的文献求助30
8秒前
qhg发布了新的文献求助10
9秒前
李李发布了新的文献求助10
10秒前
hmj完成签到,获得积分20
10秒前
Zx_1993应助我到了啊采纳,获得10
10秒前
11秒前
LYH发布了新的文献求助10
11秒前
11秒前
Lucas应助CHAUSU采纳,获得10
11秒前
自信绿蝶发布了新的文献求助10
12秒前
13秒前
Cloud9完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Routledge Handbook on Spaces of Mental Health and Wellbeing 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5321077
求助须知:如何正确求助?哪些是违规求助? 4462894
关于积分的说明 13888018
捐赠科研通 4353883
什么是DOI,文献DOI怎么找? 2391403
邀请新用户注册赠送积分活动 1385061
关于科研通互助平台的介绍 1354824