Application of imaging S-lidars: functional and diagnostic capabilities for remote air pollution detection

激光雷达 遥感 计算机科学 测距 环境科学 航程(航空) 参数统计 电信 材料科学 地质学 数学 统计 复合材料
作者
Ravil R. Agishev
出处
期刊:Optical Engineering [SPIE]
卷期号:60 (08) 被引量:3
标识
DOI:10.1117/1.oe.60.8.084104
摘要

Imaging S-lidars have proven themselves in recent years as a new class of laser sensors for remote environmental monitoring and an alternative to traditional atmospheric lidars. Providing range-resolvable remote monitoring, these lidars use low-power CW lasers and advanced nanophotonics technologies to enable compact and cost-effective technological solutions. As a topical application, we have explored the potential of S-lidars to detect atmospheric pollution. We presented a generalized system structure adapted for such application field focusing on approaches to provide the necessary spatial selectivity. By adapting the universal lidar equation to S-lidar features, we have used a dimensionless parametric approach to provide a generalized description of this class of remote sensors. The possible wide variability of the ambient optical weather in the visible and near-infrared ranges was taken into account. It was shown how to apply the Q-criterion of spatial selectivity, we introduced for accounting the S-lidars specificity, to predict the borders of the operation range that can actually be covered by the sensor for reliable gaseous pollution detection. We have demonstrated how to estimate the possible narrowing of the range of concentration sensitivity with increasing requirements for spatial selectivity. The proposed methodology for analyzing the functional and diagnostic capabilities of S-lidars shows the presence of both undoubted advantages and some specific limitations of the achievable range of detectable gas concentrations. Following this methodology, it is possible to improve the validity of design solutions in a variety of applications of this promising class of lidars.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
iNk应助科研通管家采纳,获得20
刚刚
脑洞疼应助科研通管家采纳,获得10
刚刚
深情安青应助科研通管家采纳,获得10
刚刚
musejie应助科研通管家采纳,获得10
刚刚
自信夜春完成签到,获得积分10
刚刚
思源应助科研通管家采纳,获得10
1秒前
JamesPei应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
六六安安完成签到,获得积分10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
华仔应助科研通管家采纳,获得10
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
时安发布了新的文献求助10
1秒前
xiaoluoluo完成签到,获得积分10
2秒前
宏hong发布了新的文献求助10
2秒前
默默魔镜完成签到,获得积分10
2秒前
张阳发布了新的文献求助10
2秒前
无糖零脂发布了新的文献求助10
2秒前
3秒前
赘婿应助tan_sg采纳,获得10
3秒前
faiting发布了新的文献求助10
3秒前
阿圆完成签到,获得积分20
3秒前
cc2064发布了新的文献求助10
3秒前
3秒前
320me666完成签到,获得积分10
4秒前
4秒前
归尘应助XS_QI采纳,获得10
4秒前
杨小么发布了新的文献求助10
4秒前
活力乐萱发布了新的文献求助10
4秒前
5秒前
开心蘑菇应助xdc采纳,获得10
5秒前
up发布了新的文献求助10
6秒前
刘岩松完成签到,获得积分10
6秒前
企鹅大王发布了新的文献求助10
6秒前
woiwxx发布了新的文献求助10
7秒前
schen完成签到,获得积分10
7秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986641
求助须知:如何正确求助?哪些是违规求助? 3529109
关于积分的说明 11243520
捐赠科研通 3267633
什么是DOI,文献DOI怎么找? 1803801
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582