已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Application of imaging S-lidars: functional and diagnostic capabilities for remote air pollution detection

激光雷达 遥感 计算机科学 测距 环境科学 航程(航空) 参数统计 电信 材料科学 地质学 数学 统计 复合材料
作者
Ravil R. Agishev
出处
期刊:Optical Engineering [SPIE - International Society for Optical Engineering]
卷期号:60 (08) 被引量:3
标识
DOI:10.1117/1.oe.60.8.084104
摘要

Imaging S-lidars have proven themselves in recent years as a new class of laser sensors for remote environmental monitoring and an alternative to traditional atmospheric lidars. Providing range-resolvable remote monitoring, these lidars use low-power CW lasers and advanced nanophotonics technologies to enable compact and cost-effective technological solutions. As a topical application, we have explored the potential of S-lidars to detect atmospheric pollution. We presented a generalized system structure adapted for such application field focusing on approaches to provide the necessary spatial selectivity. By adapting the universal lidar equation to S-lidar features, we have used a dimensionless parametric approach to provide a generalized description of this class of remote sensors. The possible wide variability of the ambient optical weather in the visible and near-infrared ranges was taken into account. It was shown how to apply the Q-criterion of spatial selectivity, we introduced for accounting the S-lidars specificity, to predict the borders of the operation range that can actually be covered by the sensor for reliable gaseous pollution detection. We have demonstrated how to estimate the possible narrowing of the range of concentration sensitivity with increasing requirements for spatial selectivity. The proposed methodology for analyzing the functional and diagnostic capabilities of S-lidars shows the presence of both undoubted advantages and some specific limitations of the achievable range of detectable gas concentrations. Following this methodology, it is possible to improve the validity of design solutions in a variety of applications of this promising class of lidars.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
酷波er应助guo采纳,获得10
刚刚
扶摇完成签到 ,获得积分10
5秒前
5秒前
朴实子骞完成签到 ,获得积分10
6秒前
任惠贞发布了新的文献求助10
8秒前
快乐小白w发布了新的文献求助10
10秒前
hh完成签到,获得积分20
14秒前
充电宝应助zorro3574采纳,获得10
14秒前
14秒前
pk发布了新的文献求助10
15秒前
棠棠发布了新的文献求助10
15秒前
峰成完成签到 ,获得积分10
15秒前
今后应助ruopiao采纳,获得10
16秒前
16秒前
小蘑菇应助Isabella采纳,获得10
17秒前
无极微光应助贝贝采纳,获得20
18秒前
18秒前
共享精神应助Mark采纳,获得10
19秒前
研友_nxwN7L发布了新的文献求助10
19秒前
英姑应助Noneone110采纳,获得10
21秒前
烟花应助Zy189采纳,获得10
22秒前
神医magical发布了新的文献求助10
22秒前
zoe完成签到 ,获得积分10
22秒前
恒星不灭发布了新的文献求助10
23秒前
任惠贞完成签到,获得积分10
25秒前
刘亚梅完成签到,获得积分20
28秒前
李爱国应助知性的雅彤采纳,获得10
28秒前
29秒前
30秒前
30秒前
ding应助xalone采纳,获得10
32秒前
檬小洋发布了新的文献求助30
32秒前
zorro3574发布了新的文献求助10
33秒前
33秒前
Ava应助Mark采纳,获得10
34秒前
37秒前
38秒前
神勇冷亦发布了新的文献求助10
40秒前
41秒前
小强x完成签到 ,获得积分10
41秒前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5502320
求助须知:如何正确求助?哪些是违规求助? 4598287
关于积分的说明 14463306
捐赠科研通 4531820
什么是DOI,文献DOI怎么找? 2483641
邀请新用户注册赠送积分活动 1466923
关于科研通互助平台的介绍 1439539