人工神经网络
临床实习
脊柱外科
人工智能
价值(数学)
领域(数学)
医学
计算机科学
医疗保健
医学物理学
机器学习
重症监护医学
外科
物理疗法
经济增长
经济
纯数学
数学
作者
Jake M. McDonnell,Shane Evans,Laura McCarthy,Hugo C. Temperley,Caitlin Waters,Daniel P. Ahern,Gráinne M. Cunniffe,Seamus Morris,Keith Synnott,Nick Birch,Joseph S. Butler
出处
期刊:The bone & joint journal
[British Editorial Society of Bone and Joint Surgery]
日期:2021-09-01
卷期号:103-B (9): 1442-1448
被引量:16
标识
DOI:10.1302/0301-620x.103b9.bjj-2021-0192.r1
摘要
In recent years, machine learning (ML) and artificial neural networks (ANNs), a particular subset of ML, have been adopted by various areas of healthcare. A number of diagnostic and prognostic algorithms have been designed and implemented across a range of orthopaedic sub-specialties to date, with many positive results. However, the methodology of many of these studies is flawed, and few compare the use of ML with the current approach in clinical practice. Spinal surgery has advanced rapidly over the past three decades, particularly in the areas of implant technology, advanced surgical techniques, biologics, and enhanced recovery protocols. It is therefore regarded an innovative field. Inevitably, spinal surgeons will wish to incorporate ML into their practice should models prove effective in diagnostic or prognostic terms. The purpose of this article is to review published studies that describe the application of neural networks to spinal surgery and which actively compare ANN models to contemporary clinical standards allowing evaluation of their efficacy, accuracy, and relatability. It also explores some of the limitations of the technology, which act to constrain the widespread adoption of neural networks for diagnostic and prognostic use in spinal care. Finally, it describes the necessary considerations should institutions wish to incorporate ANNs into their practices. In doing so, the aim of this review is to provide a practical approach for spinal surgeons to understand the relevant aspects of neural networks. Cite this article: Bone Joint J 2021;103-B(9):1442–1448.
科研通智能强力驱动
Strongly Powered by AbleSci AI