The diagnostic and prognostic value of artificial intelligence and artificial neural networks in spinal surgery

人工神经网络 临床实习 脊柱外科 人工智能 价值(数学) 领域(数学) 医学 计算机科学 医疗保健 医学物理学 机器学习 重症监护医学 外科 物理疗法 经济增长 经济 纯数学 数学
作者
Jake M. McDonnell,Shane Evans,Laura McCarthy,Hugo C. Temperley,Caitlin Waters,Daniel P. Ahern,Gráinne M. Cunniffe,Seamus Morris,Keith Synnott,Nick Birch,Joseph S. Butler
出处
期刊:The bone & joint journal [British Editorial Society of Bone and Joint Surgery]
卷期号:103-B (9): 1442-1448 被引量:16
标识
DOI:10.1302/0301-620x.103b9.bjj-2021-0192.r1
摘要

In recent years, machine learning (ML) and artificial neural networks (ANNs), a particular subset of ML, have been adopted by various areas of healthcare. A number of diagnostic and prognostic algorithms have been designed and implemented across a range of orthopaedic sub-specialties to date, with many positive results. However, the methodology of many of these studies is flawed, and few compare the use of ML with the current approach in clinical practice. Spinal surgery has advanced rapidly over the past three decades, particularly in the areas of implant technology, advanced surgical techniques, biologics, and enhanced recovery protocols. It is therefore regarded an innovative field. Inevitably, spinal surgeons will wish to incorporate ML into their practice should models prove effective in diagnostic or prognostic terms. The purpose of this article is to review published studies that describe the application of neural networks to spinal surgery and which actively compare ANN models to contemporary clinical standards allowing evaluation of their efficacy, accuracy, and relatability. It also explores some of the limitations of the technology, which act to constrain the widespread adoption of neural networks for diagnostic and prognostic use in spinal care. Finally, it describes the necessary considerations should institutions wish to incorporate ANNs into their practices. In doing so, the aim of this review is to provide a practical approach for spinal surgeons to understand the relevant aspects of neural networks. Cite this article: Bone Joint J 2021;103-B(9):1442–1448.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yin完成签到,获得积分10
刚刚
认真搞科研啦完成签到,获得积分10
刚刚
刚刚
1111发布了新的文献求助10
1秒前
jailbreaker完成签到 ,获得积分10
1秒前
1秒前
YH完成签到,获得积分10
1秒前
NexusExplorer应助仁爱发卡采纳,获得10
1秒前
Song发布了新的文献求助10
2秒前
晨曦发布了新的文献求助10
4秒前
路遥完成签到,获得积分10
4秒前
英俊的铭应助羞涩的太阳采纳,获得10
4秒前
蘅大爷完成签到,获得积分10
4秒前
Debra发布了新的文献求助10
7秒前
7秒前
7秒前
Andy完成签到 ,获得积分10
8秒前
www完成签到 ,获得积分10
9秒前
晨曦完成签到,获得积分10
9秒前
Wzh完成签到,获得积分10
10秒前
朴实初夏完成签到 ,获得积分10
11秒前
Yziii应助路遥采纳,获得20
11秒前
浅笑应助赤安采纳,获得20
11秒前
12秒前
木可发布了新的文献求助10
12秒前
小二郎应助千倾采纳,获得10
12秒前
13秒前
阳光总在风雨后完成签到,获得积分10
13秒前
14秒前
星星草完成签到,获得积分10
14秒前
14秒前
NA完成签到,获得积分10
14秒前
lizixiang发布了新的文献求助30
15秒前
小二郎应助jenol采纳,获得20
15秒前
zsj完成签到,获得积分10
16秒前
年轻的吐司完成签到,获得积分10
16秒前
虚幻谷丝完成签到,获得积分10
17秒前
科研小白发布了新的文献求助10
17秒前
子车茗应助su采纳,获得30
17秒前
景行行止发布了新的文献求助10
18秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3257518
求助须知:如何正确求助?哪些是违规求助? 2899479
关于积分的说明 8305791
捐赠科研通 2568680
什么是DOI,文献DOI怎么找? 1395251
科研通“疑难数据库(出版商)”最低求助积分说明 652969
邀请新用户注册赠送积分活动 630767