Automated image identification, detection and fruit counting of top-view pineapple crown using machine learning

人工智能 支持向量机 朴素贝叶斯分类器 模式识别(心理学) 计算机科学 随机森林 RGB颜色模型 图像处理 计算机视觉 机器视觉 机器学习 图像(数学)
作者
R. Wan Nurazwin Syazwani,H. Muhammad Asraf,M. Ashraful Amin,K. A. Nur Dalila
出处
期刊:alexandria engineering journal [Elsevier]
卷期号:61 (2): 1265-1276 被引量:55
标识
DOI:10.1016/j.aej.2021.06.053
摘要

Automated fruit identification or recognition using image processing is a key element in precision agriculture for performing object detection in large crop plots. Automation of fruit recognition for the captured top-view of RGB based images using an unmanned aerial vehicle (UAV) is a challenge. Image analysis demonstrated the difficulty of processing the captured image under variant illumination in natural environment and with textured objects of non-ideal geometric shapes. However, this is subjected to certain consideration settings and image-processing algorithms. The study presents an automatic method for identifying and recognising the pineapple’s crown images in the designated plot using image processing and further counts the detected images using machine learning classifiers namely artificial neural network (ANN), support vector machine (SVM), random forest (RF), naive Bayes (NB), decision trees (DT) and k-nearest neighbours (KNN). The high spatial-resolution aerial images were pre-processed and segmented, and its extracted features were analysed according to shape, colour and texture for recognising the pineapple crown before classifying it as fruit or non-fruit. Feature fusion using one-way analysis of variance (ANOVA) was incorporated in this study to optimise the performance of machine learning classifier. The algorithm was quantitatively analysed and validated for performance via accuracy, specificity, sensitivity and precision. The detection for the pineapple’s crown images with ANN-GDX classification has demonstrated best performance fruit counting with accuracy of 94.4% and has thus demonstrated clear potential application of an effective RGB images analysis for the pineapple industry.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助冯昊采纳,获得10
刚刚
1秒前
3秒前
所所应助day_on采纳,获得10
4秒前
万能图书馆应助swiftie采纳,获得10
5秒前
毛小毛发布了新的文献求助10
5秒前
5秒前
深情安青应助coconut采纳,获得30
5秒前
6秒前
brucelin发布了新的文献求助30
6秒前
8秒前
dev-evo发布了新的文献求助10
9秒前
10秒前
冯昊发布了新的文献求助10
11秒前
AaronW应助cnmkyt采纳,获得10
13秒前
北欧海盗发布了新的文献求助10
13秒前
JamesPei应助ntxlks采纳,获得10
13秒前
章鱼小丸子完成签到,获得积分10
16秒前
无花果应助dev-evo采纳,获得10
16秒前
慕青应助冯昊采纳,获得10
16秒前
一颗树发布了新的文献求助10
18秒前
郑盼秋完成签到,获得积分10
19秒前
23秒前
aa完成签到,获得积分10
23秒前
yoly完成签到,获得积分10
23秒前
David发布了新的文献求助10
23秒前
852应助xinxin采纳,获得10
23秒前
D1504009654完成签到,获得积分10
24秒前
SGY完成签到,获得积分20
25秒前
英俊丹秋发布了新的文献求助10
26秒前
小马甲应助Chrishoper采纳,获得10
26秒前
子车茗应助刘洋采纳,获得10
26秒前
张涛发布了新的文献求助10
27秒前
28秒前
Hello应助北欧海盗采纳,获得10
28秒前
科研通AI2S应助jianjiao采纳,获得10
30秒前
maomao发布了新的文献求助10
31秒前
Jason发布了新的文献求助10
32秒前
33秒前
科目三应助lxy采纳,获得10
33秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160894
求助须知:如何正确求助?哪些是违规求助? 2812133
关于积分的说明 7894461
捐赠科研通 2470993
什么是DOI,文献DOI怎么找? 1315830
科研通“疑难数据库(出版商)”最低求助积分说明 631036
版权声明 602068