Recent Approaches on Classification and Feature Extraction of EEG Signal: A Review

人工智能 计算机科学 脑电图 模式识别(心理学) 特征提取 k-最近邻算法 机器学习 朴素贝叶斯分类器 支持向量机 分类器(UML) 心理学 精神科
作者
Pooja Sharma,SK Pahuja,Karan Veer
出处
期刊:Robotica [Cambridge University Press]
卷期号:40 (1): 77-101 被引量:39
标识
DOI:10.1017/s0263574721000382
摘要

Abstract Objective: Electroencephalography (EEG) has an influential role in neuroscience and commercial applications. Most of the tools available for EEG signal analysis use machine learning to extract the required information. So, the study of robust techniques for feature extraction and classification is an important thing to understand the practical use of EEG. The paper aims that if there is any special tool for a particular task. Which feature domain or classifier has a significant role in EEG signal analysis? Approach: It presents a detailed report of the current trend for bio-electrical signals classification focusing on various classifiers’ advantages and disadvantages. This study includes literature from 2000 to 2021 with a brief description of EEG signal origin and advancement in classification techniques. Results: Randomly used classifiers for EEG signal can be categorized into five classes, namely Linear Classifiers, Nearest Neighbor Classifiers, Nonlinear Bayesian Classifiers, Neural Networks, and Combinations of Classifiers. Approximately 40% of studies use Support Vector Machine, Nearest Neighbor, and their combination with others. For specific tasks, particular classifiers are recommended in the survey. Features can be defined into four categories, namely TDFs, FDFs, TFDFs, and statistical features, where 39% of studies used TFDFs. Multi-domains features are preferred when the required information cannot be obtained from one domain. Significance: The paper summarizes the recent approaches for feature extraction and classification of EEG signals. It describes the brain waves with their classification, related behavior, and task with the physiological correlation. The comparative analysis of different classifiers, toolbox, the channel used, accuracy, and the number of subjects from various studies can help the practitioners choose a suitable classifier. Furthermore, future directions can cope up with the relevant problems and can lead to accurate classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hascy发布了新的文献求助10
1秒前
1秒前
wurui发布了新的文献求助10
1秒前
1秒前
A溶大美噶完成签到,获得积分10
2秒前
魔法披风完成签到,获得积分10
2秒前
领导范儿应助冷静青文采纳,获得10
3秒前
3秒前
3秒前
3秒前
李健应助阳炎采纳,获得10
3秒前
无昵称完成签到,获得积分10
3秒前
lyj完成签到,获得积分10
4秒前
田様应助Zephyr采纳,获得10
4秒前
4秒前
劲秉应助HJ皎采纳,获得10
4秒前
飞快的咖啡豆Evil完成签到,获得积分10
5秒前
一颗烂番茄完成签到 ,获得积分10
5秒前
Ao完成签到,获得积分10
5秒前
5秒前
安和桥北完成签到 ,获得积分10
5秒前
念柏完成签到,获得积分10
5秒前
Baneyhua完成签到,获得积分10
5秒前
生动的踏歌完成签到,获得积分10
6秒前
xiaopihaier完成签到,获得积分10
6秒前
大气指甲油完成签到,获得积分10
6秒前
huanhuan发布了新的文献求助10
6秒前
南北完成签到,获得积分10
6秒前
乖乖完成签到 ,获得积分10
6秒前
心心爱学习完成签到,获得积分10
7秒前
7秒前
你好呀发布了新的文献求助10
7秒前
1310发布了新的文献求助10
7秒前
8秒前
英俊的铭应助哈哈哈哈采纳,获得10
8秒前
hyeseongu发布了新的文献求助10
9秒前
9秒前
诸亦凝完成签到,获得积分10
9秒前
超级的路人完成签到,获得积分20
9秒前
LOT完成签到,获得积分10
10秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3471793
求助须知:如何正确求助?哪些是违规求助? 3064675
关于积分的说明 9089704
捐赠科研通 2755407
什么是DOI,文献DOI怎么找? 1512031
邀请新用户注册赠送积分活动 698629
科研通“疑难数据库(出版商)”最低求助积分说明 698517