亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Recent Approaches on Classification and Feature Extraction of EEG Signal: A Review

人工智能 计算机科学 脑电图 模式识别(心理学) 特征提取 k-最近邻算法 机器学习 朴素贝叶斯分类器 支持向量机 分类器(UML) 心理学 精神科
作者
Pooja Sharma,SK Pahuja,Karan Veer
出处
期刊:Robotica [Cambridge University Press]
卷期号:40 (1): 77-101 被引量:57
标识
DOI:10.1017/s0263574721000382
摘要

Abstract Objective: Electroencephalography (EEG) has an influential role in neuroscience and commercial applications. Most of the tools available for EEG signal analysis use machine learning to extract the required information. So, the study of robust techniques for feature extraction and classification is an important thing to understand the practical use of EEG. The paper aims that if there is any special tool for a particular task. Which feature domain or classifier has a significant role in EEG signal analysis? Approach: It presents a detailed report of the current trend for bio-electrical signals classification focusing on various classifiers’ advantages and disadvantages. This study includes literature from 2000 to 2021 with a brief description of EEG signal origin and advancement in classification techniques. Results: Randomly used classifiers for EEG signal can be categorized into five classes, namely Linear Classifiers, Nearest Neighbor Classifiers, Nonlinear Bayesian Classifiers, Neural Networks, and Combinations of Classifiers. Approximately 40% of studies use Support Vector Machine, Nearest Neighbor, and their combination with others. For specific tasks, particular classifiers are recommended in the survey. Features can be defined into four categories, namely TDFs, FDFs, TFDFs, and statistical features, where 39% of studies used TFDFs. Multi-domains features are preferred when the required information cannot be obtained from one domain. Significance: The paper summarizes the recent approaches for feature extraction and classification of EEG signals. It describes the brain waves with their classification, related behavior, and task with the physiological correlation. The comparative analysis of different classifiers, toolbox, the channel used, accuracy, and the number of subjects from various studies can help the practitioners choose a suitable classifier. Furthermore, future directions can cope up with the relevant problems and can lead to accurate classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
醉熏的飞薇完成签到,获得积分10
3秒前
5秒前
Rabbit发布了新的文献求助10
9秒前
Perry发布了新的文献求助10
11秒前
18秒前
Perry完成签到,获得积分10
20秒前
29秒前
量子星尘发布了新的文献求助10
54秒前
JrPaleo101完成签到,获得积分10
1分钟前
遇上就这样吧应助liudy采纳,获得50
1分钟前
1分钟前
Chocolat_Chaud完成签到,获得积分10
1分钟前
舒适踏歌完成签到,获得积分10
1分钟前
2分钟前
Esperanza完成签到,获得积分10
2分钟前
完美的海发布了新的文献求助10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
完美的海完成签到,获得积分10
3分钟前
wisdom发布了新的文献求助10
3分钟前
水牛完成签到,获得积分20
3分钟前
3分钟前
HL完成签到,获得积分10
3分钟前
3分钟前
flyingpig应助wisdom采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
Sid完成签到,获得积分0
5分钟前
李li完成签到,获得积分20
5分钟前
论高等数学的无用性完成签到 ,获得积分10
5分钟前
搜集达人应助小梦采纳,获得10
5分钟前
李li发布了新的文献求助10
5分钟前
5分钟前
量子星尘发布了新的文献求助10
6分钟前
6分钟前
在水一方应助nsc采纳,获得10
6分钟前
6分钟前
judy007发布了新的文献求助10
6分钟前
6分钟前
nsc发布了新的文献求助10
6分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957044
求助须知:如何正确求助?哪些是违规求助? 3503067
关于积分的说明 11111230
捐赠科研通 3234118
什么是DOI,文献DOI怎么找? 1787727
邀请新用户注册赠送积分活动 870762
科研通“疑难数据库(出版商)”最低求助积分说明 802264