亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Improved autoencoder for unsupervised anomaly detection

自编码 异常检测 人工智能 计算机科学 理论(学习稳定性) 模式识别(心理学) 特征(语言学) 失真(音乐) 深度学习 异常(物理) 数据挖掘 机器学习 无监督学习 物理 语言学 哲学 计算机网络 凝聚态物理 放大器 带宽(计算)
作者
Zhen Cheng,Siwei Wang,Pei Zhang,Siqi Wang,Xinwang Liu,En Zhu
出处
期刊:International Journal of Intelligent Systems [Wiley]
卷期号:36 (12): 7103-7125 被引量:84
标识
DOI:10.1002/int.22582
摘要

Deep autoencoder-based methods are the majority of deep anomaly detection. An autoencoder learning on training data is assumed to produce higher reconstruction error for the anomalous samples than the normal samples and thus can distinguish anomalies from normal data. However, this assumption does not always hold in practice, especially in unsupervised anomaly detection, where the training data is anomaly contaminated. We observe that the autoencoder generalizes so well on the training data that it can reconstruct both the normal data and the anomalous data well, leading to poor anomaly detection performance. Besides, we find that anomaly detection performance is not stable when using reconstruction error as anomaly score, which is unacceptable in the unsupervised scenario. Because there are no labels to guide on selecting a proper model. To mitigate these drawbacks for autoencoder-based anomaly detection methods, we propose an Improved AutoEncoder for unsupervised Anomaly Detection (IAEAD). Specifically, we manipulate feature space to make normal data points closer using anomaly detection-based loss as guidance. Different from previous methods, by integrating the anomaly detection-based loss and autoencoder's reconstruction loss, IAEAD can jointly optimize for anomaly detection tasks and learn representations that preserve the local data structure to avoid feature distortion. Experiments on five image data sets empirically validate the effectiveness and stability of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
22秒前
24秒前
西瓜霜发布了新的文献求助10
28秒前
39秒前
彭于晏应助读书的时候采纳,获得80
51秒前
落沧完成签到 ,获得积分10
51秒前
充电宝应助西瓜霜采纳,获得10
54秒前
57秒前
57秒前
Jasper应助科研通管家采纳,获得10
58秒前
大模型应助科研通管家采纳,获得30
58秒前
科研通AI6应助科研通管家采纳,获得10
58秒前
传奇3应助读书的时候采纳,获得10
1分钟前
JodieZhu完成签到,获得积分10
1分钟前
嘻嘻哈哈发布了新的文献求助10
1分钟前
1分钟前
wz完成签到,获得积分10
1分钟前
JamesPei应助manjusaka采纳,获得10
2分钟前
bkagyin应助读书的时候采纳,获得10
2分钟前
2分钟前
manjusaka发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
vitamin完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
嘻嘻哈哈发布了新的文献求助10
3分钟前
3分钟前
3分钟前
大模型应助读书的时候采纳,获得10
4分钟前
4分钟前
4分钟前
5分钟前
5分钟前
刻苦的艳发布了新的文献求助10
5分钟前
酷波er应助刻苦的艳采纳,获得30
5分钟前
5分钟前
5分钟前
果酱完成签到,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5732400
求助须知:如何正确求助?哪些是违规求助? 5338949
关于积分的说明 15322212
捐赠科研通 4877990
什么是DOI,文献DOI怎么找? 2620796
邀请新用户注册赠送积分活动 1570000
关于科研通互助平台的介绍 1526672