EEG Channel Correlation Based Model for Emotion Recognition

计算机科学 脑电图 卷积神经网络 人工智能 相关性 模式识别(心理学) 特征提取 价(化学) 特征(语言学) 唤醒 情绪识别 频道(广播) 语音识别 心理学 数学 神经科学 量子力学 精神科 物理 哲学 语言学 计算机网络 几何学
作者
Md. Rabiul Islam,Md. Milon Islam,R. Saidur,Chayan Mondal,Suvojit Kumar Singha,Mohiuddin Ahmad,Abdul Awal,Md. Saiful Islam,Mohammad Ali Moni
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:136: 104757-104757 被引量:126
标识
DOI:10.1016/j.compbiomed.2021.104757
摘要

Emotion recognition using Artificial Intelligence (AI) is a fundamental prerequisite to improve Human-Computer Interaction (HCI). Recognizing emotion from Electroencephalogram (EEG) has been globally accepted in many applications such as intelligent thinking, decision-making, social communication, feeling detection, affective computing, etc. Nevertheless, due to having too low amplitude variation related to time on EEG signal, the proper recognition of emotion from this signal has become too challenging. Usually, considerable effort is required to identify the proper feature or feature set for an effective feature-based emotion recognition system. To extenuate the manual human effort of feature extraction, we proposed a deep machine-learning-based model with Convolutional Neural Network (CNN). At first, the one-dimensional EEG data were converted to Pearson's Correlation Coefficient (PCC) featured images of channel correlation of EEG sub-bands. Then the images were fed into the CNN model to recognize emotion. Two protocols were conducted, namely, protocol-1 to identify two levels and protocol-2 to recognize three levels of valence and arousal that demonstrate emotion. We investigated that only the upper triangular portion of the PCC featured images reduced the computational complexity and size of memory without hampering the model accuracy. The maximum accuracy of 78.22% on valence and 74.92% on arousal were obtained using the internationally authorized DEAP dataset. • EEG based emotion recognition model is proposed using Convolutional Neural Network architecture. • Pearson's Correlation Coefficients (PCC) of alpha, beta and gamma sub-bands are used. • A novel method focusing on lower computational complexity based on memory requirement and computational time. • Low, medium and high level of valence and arousal based emotion recognition model with PCC feature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Ava应助xu采纳,获得10
3秒前
xr完成签到 ,获得积分10
4秒前
4秒前
共享精神应助琪凯定理采纳,获得10
4秒前
贝贝完成签到 ,获得积分10
4秒前
箐筝完成签到,获得积分10
5秒前
Chengcheng发布了新的文献求助10
5秒前
Bio应助aike采纳,获得50
6秒前
6秒前
1ssd完成签到,获得积分10
6秒前
光亮静槐完成签到 ,获得积分10
7秒前
7秒前
烟喜完成签到,获得积分10
8秒前
研友_nqv2WZ完成签到,获得积分10
8秒前
8秒前
Yumori完成签到,获得积分10
8秒前
嘻嘻发布了新的文献求助10
9秒前
9秒前
naturecandy发布了新的文献求助10
9秒前
箐筝发布了新的文献求助20
10秒前
lxr完成签到 ,获得积分10
11秒前
阳光完成签到,获得积分10
11秒前
有魅力的戒指完成签到,获得积分10
12秒前
枫之林发布了新的文献求助30
12秒前
14秒前
xu发布了新的文献求助10
14秒前
猪猪hero应助阿拉灯采纳,获得10
14秒前
15秒前
15秒前
16秒前
Heart_of_Stone完成签到 ,获得积分10
16秒前
17秒前
炙热灵完成签到,获得积分20
17秒前
量子星尘发布了新的文献求助10
17秒前
18秒前
彭于晏应助科研通管家采纳,获得10
18秒前
yx_cheng应助科研通管家采纳,获得30
18秒前
今后应助科研通管家采纳,获得10
18秒前
18秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Effective Learning and Mental Wellbeing 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975900
求助须知:如何正确求助?哪些是违规求助? 3520207
关于积分的说明 11201602
捐赠科研通 3256663
什么是DOI,文献DOI怎么找? 1798403
邀请新用户注册赠送积分活动 877564
科研通“疑难数据库(出版商)”最低求助积分说明 806430