EEG Channel Correlation Based Model for Emotion Recognition

计算机科学 脑电图 卷积神经网络 人工智能 相关性 模式识别(心理学) 特征提取 价(化学) 特征(语言学) 皮尔逊积矩相关系数 相关系数 频道(广播) 语音识别 机器学习 心理学 数学 统计 量子力学 精神科 物理 哲学 语言学 计算机网络 几何学
作者
Md. Rabiul Islam,Md. Milon Islam,Md. Mustafizur Rahman,Chayan Mondal,Suvojit Kumar Singha,Mohiuddin Ahmad,Abdul Awal,Md. Saiful Islam,Mohammad Ali Moni
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:136: 104757-104757 被引量:21
标识
DOI:10.1016/j.compbiomed.2021.104757
摘要

Emotion recognition using Artificial Intelligence (AI) is a fundamental prerequisite to improve Human-Computer Interaction (HCI). Recognizing emotion from Electroencephalogram (EEG) has been globally accepted in many applications such as intelligent thinking, decision-making, social communication, feeling detection, affective computing, etc. Nevertheless, due to having too low amplitude variation related to time on EEG signal, the proper recognition of emotion from this signal has become too challenging. Usually, considerable effort is required to identify the proper feature or feature set for an effective feature-based emotion recognition system. To extenuate the manual human effort of feature extraction, we proposed a deep machine-learning-based model with Convolutional Neural Network (CNN). At first, the one-dimensional EEG data were converted to Pearson's Correlation Coefficient (PCC) featured images of channel correlation of EEG sub-bands. Then the images were fed into the CNN model to recognize emotion. Two protocols were conducted, namely, protocol-1 to identify two levels and protocol-2 to recognize three levels of valence and arousal that demonstrate emotion. We investigated that only the upper triangular portion of the PCC featured images reduced the computational complexity and size of memory without hampering the model accuracy. The maximum accuracy of 78.22% on valence and 74.92% on arousal were obtained using the internationally authorized DEAP dataset. • EEG based emotion recognition model is proposed using Convolutional Neural Network architecture. • Pearson's Correlation Coefficients (PCC) of alpha, beta and gamma sub-bands are used. • A novel method focusing on lower computational complexity based on memory requirement and computational time. • Low, medium and high level of valence and arousal based emotion recognition model with PCC feature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
飞跃发布了新的文献求助10
1秒前
JamesPei应助eternal_dreams采纳,获得10
1秒前
大卫戴发布了新的文献求助10
1秒前
123完成签到,获得积分10
3秒前
3秒前
LayeredSly完成签到,获得积分10
3秒前
cghmfgh完成签到,获得积分10
5秒前
补丁举报求助违规成功
5秒前
加菲丰丰举报求助违规成功
5秒前
Viva举报求助违规成功
5秒前
5秒前
th0357发布了新的文献求助10
5秒前
爆米花应助科研小白采纳,获得10
6秒前
lehha发布了新的文献求助10
6秒前
7秒前
Ava应助y彤采纳,获得10
7秒前
充电宝应助炫技且谦虚采纳,获得10
7秒前
susui发布了新的文献求助10
8秒前
9秒前
Ava应助欣雨秋尘采纳,获得10
9秒前
JamesPei应助ShiYanYang采纳,获得10
10秒前
10秒前
在水一方应助小林采纳,获得10
10秒前
小蘑菇应助然然采纳,获得10
12秒前
13秒前
13秒前
17秒前
调研昵称发布了新的文献求助10
18秒前
浏阳河发布了新的文献求助10
18秒前
llxgjx完成签到,获得积分10
18秒前
犬豆斑发布了新的文献求助10
19秒前
不来应助大卫戴采纳,获得10
20秒前
Lucas应助夜之枫采纳,获得10
21秒前
21秒前
爆米花应助陈丫采纳,获得10
21秒前
聪慧的月饼完成签到,获得积分10
22秒前
22秒前
asd关闭了asd文献求助
23秒前
23秒前
cjl发布了新的文献求助10
23秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
ANSYS Workbench基础教程与实例详解 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3325661
求助须知:如何正确求助?哪些是违规求助? 2956332
关于积分的说明 8580190
捐赠科研通 2634297
什么是DOI,文献DOI怎么找? 1441859
科研通“疑难数据库(出版商)”最低求助积分说明 667952
邀请新用户注册赠送积分活动 654791