已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Non-interactive verifiable privacy-preserving federated learning

计算机科学 可验证秘密共享 架空(工程) 服务器 计算机网络 方案(数学) 分布式计算 密码学 计算机安全 信息隐私 数学 操作系统 数学分析 集合(抽象数据类型) 程序设计语言
作者
Yi Xu,Changgen Peng,Weijie Tan,Youliang Tian,Minyao Ma,Kun Niu
出处
期刊:Future Generation Computer Systems [Elsevier BV]
卷期号:128: 365-380 被引量:18
标识
DOI:10.1016/j.future.2021.10.017
摘要

Federated Learning (FL) has received widespread attention for its ability to conduct collaborative learning without collecting raw data. Recently, it has became a reality that more accurate model training is achieved through the large-scale deployment of FL on resource-constrained device, where the communication is expensive and clients dropping out is common, such as mobile phone or IoT devices etc. However, shared local gradients make the privacy of local data in FL vulnerable, and the client is easily deceived by the server for the returned forged results. To solve these problems, the existing schemes either only consider the privacy protection requirements under the communication-limited but not involving verifiability, or consider the privacy-protection and verification separately, which incurs expensive computation and communication costs. It is a challenge to design a lightweight verifiable privacy preserving gradient aggregation scheme for large-scale resource-constrained clients under the communication-limited condition. In this paper, we proposed a non-interactive verifiable privacy-preserving FL based on dual-servers (NIVP-DS) architecture, which improves the efficiency and security of the system and is robust to clients dropping out, based on the constraints that the communication overhead between client and server not more than 2× that of plaintext computation. Based on NIVP-DS, an efficient privacy gradient aggregation scheme is presented by exploiting random matrix coding and secure 2-party computation. The scheme only costs O(M) fully linear operation in the client side under the communication constraints. In order to realize the verifiability, a cross-verification method is introduce, which is based on credible matrix exchange to extend the privacy aggregation scheme to a verifiable scheme. The method only costs little additional overhead, meanwhile, guarantees that one dishonest server cannot forge the aggregate results to deceive the honest client, even if it colludes with multiple clients. The effectiveness of NIVP-DS in practice is corroborated by experiments. The results show that the performance of both secure aggregation and verification are efficiency, and the additional overhead of verification is minimal.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
李佳佳关注了科研通微信公众号
刚刚
bonster完成签到,获得积分10
刚刚
852应助冷酷的雪柳采纳,获得10
刚刚
可爱的函函应助Tian采纳,获得10
2秒前
3秒前
3秒前
zzn完成签到,获得积分10
3秒前
Sue完成签到 ,获得积分10
4秒前
123456发布了新的文献求助10
4秒前
酷波er应助jj采纳,获得10
5秒前
左眼天堂发布了新的文献求助10
5秒前
5秒前
一个妮完成签到,获得积分10
5秒前
Terence完成签到,获得积分10
6秒前
7秒前
7秒前
默默的阑悦完成签到,获得积分10
7秒前
8秒前
8秒前
bkagyin应助小刘采纳,获得10
10秒前
zzx发布了新的文献求助10
11秒前
OVERSEER完成签到,获得积分10
11秒前
11秒前
老实的水壶完成签到,获得积分10
12秒前
小黎发布了新的文献求助10
12秒前
Terence发布了新的文献求助10
13秒前
燃燃完成签到 ,获得积分10
13秒前
15秒前
15秒前
今天你学习了嘛完成签到 ,获得积分10
15秒前
1111发布了新的文献求助10
16秒前
Hey完成签到 ,获得积分10
16秒前
18秒前
小黎完成签到,获得积分20
18秒前
宋子虎完成签到 ,获得积分10
18秒前
18秒前
zpz发布了新的文献求助10
19秒前
19秒前
20秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Maneuvering of a Damaged Navy Combatant 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3770313
求助须知:如何正确求助?哪些是违规求助? 3315367
关于积分的说明 10175613
捐赠科研通 3030368
什么是DOI,文献DOI怎么找? 1662833
邀请新用户注册赠送积分活动 795162
科研通“疑难数据库(出版商)”最低求助积分说明 756612