Combining Graph Neural Networks with Expert Knowledge for Smart Contract Vulnerability Detection

计算机科学 可扩展性 脆弱性评估 智能合约 图形 语义学(计算机科学) 脆弱性(计算) 控制流程图 计算机安全 人工智能 机器学习 理论计算机科学 数据库 程序设计语言 心理学 心理弹性 心理治疗师 块链
作者
Zhenguang Liu,Peng Qian,Xiaoyang Wang,Yuan Zhuang,Lin Qiu,Xun Wang
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:64
标识
DOI:10.1109/tkde.2021.3095196
摘要

Smart contract vulnerability detection draws extensive attention in recent years due to the substantial losses caused by hacker-attacks. Existing efforts for contract security analysis heavily rely on rigid rules defined by experts, which is labor-intensive and non-scalable. More importantly, expert-defined rules tend to be error-prone and suffer the inherent risk of being cheated by crafty attackers. Recent researches focus on the symbolic execution and formal analysis of smart contract for vulnerability detection, yet to achieve a precise and scalable solution. Although several methods have been proposed to detect vulnerabilities in smart contracts, there is still a lack of effort that considers combining expert-defined security patterns with deep neural networks. In this paper, we explore using graph neural networks and expert knowledge for smart contract vulnerability detection. Specifically, we cast the rich control- and data- flow semantics of the source code into a contract graph. Then, we propose a novel temporal message propagation network to extract graph feature from the normalized graph, and combine the graph feature with expert patterns to yield a final detection system. Extensive experiments are conducted on all the smart contracts that have source code in two platforms. Empirical results show significant accuracy improvements over state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷静妙海完成签到,获得积分10
刚刚
思源应助不喜采纳,获得10
刚刚
asdfzxcv应助无妄海采纳,获得10
2秒前
淡定初蓝完成签到,获得积分10
2秒前
3秒前
zwzh完成签到,获得积分10
3秒前
科研通AI6应助姜萌萌采纳,获得10
3秒前
4秒前
4秒前
yy发布了新的文献求助10
4秒前
5秒前
Rio完成签到,获得积分10
5秒前
5秒前
虚心柏柳完成签到,获得积分10
5秒前
5秒前
6秒前
须臾完成签到,获得积分10
6秒前
6秒前
6秒前
麦辣基米堡完成签到,获得积分20
7秒前
7秒前
7秒前
qiqiqi发布了新的文献求助10
8秒前
9秒前
是假的发布了新的文献求助10
9秒前
9秒前
赵丽红完成签到,获得积分10
9秒前
sunpacino完成签到,获得积分10
10秒前
xiongyuan完成签到,获得积分10
10秒前
Olivia发布了新的文献求助10
10秒前
夕荀发布了新的文献求助10
10秒前
10秒前
Jasper应助崔某采纳,获得10
11秒前
荷珠发布了新的文献求助10
11秒前
甜酒发布了新的文献求助30
12秒前
13秒前
不喜发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
13秒前
wll1091完成签到 ,获得积分10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5641981
求助须知:如何正确求助?哪些是违规求助? 4757709
关于积分的说明 15015741
捐赠科研通 4800432
什么是DOI,文献DOI怎么找? 2566041
邀请新用户注册赠送积分活动 1524182
关于科研通互助平台的介绍 1483798