Combining Graph Neural Networks with Expert Knowledge for Smart Contract Vulnerability Detection

计算机科学 可扩展性 脆弱性评估 智能合约 图形 语义学(计算机科学) 脆弱性(计算) 控制流程图 计算机安全 人工智能 机器学习 理论计算机科学 数据库 程序设计语言 心理学 心理弹性 心理治疗师 块链
作者
Zhenguang Liu,Peng Qian,Xiaoyang Wang,Yuan Zhuang,Lin Qiu,Xun Wang
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:64
标识
DOI:10.1109/tkde.2021.3095196
摘要

Smart contract vulnerability detection draws extensive attention in recent years due to the substantial losses caused by hacker-attacks. Existing efforts for contract security analysis heavily rely on rigid rules defined by experts, which is labor-intensive and non-scalable. More importantly, expert-defined rules tend to be error-prone and suffer the inherent risk of being cheated by crafty attackers. Recent researches focus on the symbolic execution and formal analysis of smart contract for vulnerability detection, yet to achieve a precise and scalable solution. Although several methods have been proposed to detect vulnerabilities in smart contracts, there is still a lack of effort that considers combining expert-defined security patterns with deep neural networks. In this paper, we explore using graph neural networks and expert knowledge for smart contract vulnerability detection. Specifically, we cast the rich control- and data- flow semantics of the source code into a contract graph. Then, we propose a novel temporal message propagation network to extract graph feature from the normalized graph, and combine the graph feature with expert patterns to yield a final detection system. Extensive experiments are conducted on all the smart contracts that have source code in two platforms. Empirical results show significant accuracy improvements over state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
penglinhua完成签到,获得积分10
1秒前
望北完成签到 ,获得积分10
2秒前
wanci应助哗啦啦采纳,获得10
2秒前
Bond完成签到 ,获得积分10
2秒前
研友_VZG7GZ应助322628采纳,获得10
3秒前
Criminology34应助搞怪柔采纳,获得10
3秒前
3秒前
4秒前
5秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
7秒前
CodeCraft应助谦让的靖巧采纳,获得10
7秒前
夏日蝉鸣发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
Snow111发布了新的文献求助10
9秒前
77完成签到,获得积分10
10秒前
zxxxxxz发布了新的文献求助10
10秒前
李健应助满意花生采纳,获得10
10秒前
呆呆发布了新的文献求助10
10秒前
陈濠完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
小张z发布了新的文献求助10
13秒前
可爱的函函应助兵临城下采纳,获得10
13秒前
爆米花应助一给我里giao采纳,获得30
14秒前
14秒前
QuIT完成签到 ,获得积分10
14秒前
谦让的靖巧完成签到,获得积分10
15秒前
17秒前
17秒前
在水一方应助Ing采纳,获得10
19秒前
21秒前
干净思远发布了新的文献求助10
23秒前
趣多多发布了新的文献求助10
24秒前
尽快看看发布了新的文献求助10
25秒前
HITGWN应助maybe采纳,获得50
26秒前
27秒前
风风发布了新的文献求助10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5778805
求助须知:如何正确求助?哪些是违规求助? 5643873
关于积分的说明 15450364
捐赠科研通 4910324
什么是DOI,文献DOI怎么找? 2642617
邀请新用户注册赠送积分活动 1590360
关于科研通互助平台的介绍 1544705