已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Combining Graph Neural Networks with Expert Knowledge for Smart Contract Vulnerability Detection

计算机科学 可扩展性 脆弱性评估 智能合约 图形 语义学(计算机科学) 脆弱性(计算) 控制流程图 计算机安全 人工智能 机器学习 理论计算机科学 数据库 程序设计语言 心理学 心理弹性 心理治疗师 块链
作者
Zhenguang Liu,Peng Qian,Xiaoyang Wang,Yuan Zhuang,Lin Qiu,Xun Wang
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:64
标识
DOI:10.1109/tkde.2021.3095196
摘要

Smart contract vulnerability detection draws extensive attention in recent years due to the substantial losses caused by hacker-attacks. Existing efforts for contract security analysis heavily rely on rigid rules defined by experts, which is labor-intensive and non-scalable. More importantly, expert-defined rules tend to be error-prone and suffer the inherent risk of being cheated by crafty attackers. Recent researches focus on the symbolic execution and formal analysis of smart contract for vulnerability detection, yet to achieve a precise and scalable solution. Although several methods have been proposed to detect vulnerabilities in smart contracts, there is still a lack of effort that considers combining expert-defined security patterns with deep neural networks. In this paper, we explore using graph neural networks and expert knowledge for smart contract vulnerability detection. Specifically, we cast the rich control- and data- flow semantics of the source code into a contract graph. Then, we propose a novel temporal message propagation network to extract graph feature from the normalized graph, and combine the graph feature with expert patterns to yield a final detection system. Extensive experiments are conducted on all the smart contracts that have source code in two platforms. Empirical results show significant accuracy improvements over state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
yin景景发布了新的文献求助10
1秒前
无花果应助钟琪采纳,获得10
1秒前
Visitor_001发布了新的文献求助10
2秒前
4秒前
5秒前
天真乌冬面完成签到 ,获得积分10
8秒前
8秒前
LH发布了新的文献求助10
9秒前
王兴博完成签到,获得积分10
9秒前
bkagyin应助烊驼采纳,获得10
10秒前
15秒前
yue完成签到 ,获得积分10
16秒前
肖敏发布了新的文献求助10
16秒前
17秒前
冰棒比冰冰完成签到 ,获得积分10
17秒前
隐形曼青应助科研通管家采纳,获得10
19秒前
ceeray23发布了新的文献求助20
19秒前
香蕉觅云应助科研通管家采纳,获得10
19秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
赘婿应助科研通管家采纳,获得10
20秒前
20秒前
20秒前
JamesPei应助科研通管家采纳,获得10
20秒前
20秒前
20秒前
深情安青应助科研通管家采纳,获得10
20秒前
shhoing应助科研通管家采纳,获得10
20秒前
张某某应助科研通管家采纳,获得10
20秒前
20秒前
20秒前
20秒前
21秒前
21秒前
fengl完成签到,获得积分10
23秒前
23秒前
跟我回江南完成签到,获得积分10
24秒前
24秒前
27秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5538224
求助须知:如何正确求助?哪些是违规求助? 4625430
关于积分的说明 14595889
捐赠科研通 4565994
什么是DOI,文献DOI怎么找? 2502869
邀请新用户注册赠送积分活动 1481206
关于科研通互助平台的介绍 1452435