Combining Graph Neural Networks with Expert Knowledge for Smart Contract Vulnerability Detection

计算机科学 可扩展性 脆弱性评估 智能合约 图形 语义学(计算机科学) 脆弱性(计算) 控制流程图 计算机安全 人工智能 机器学习 理论计算机科学 数据库 程序设计语言 心理学 心理弹性 心理治疗师 块链
作者
Zhenguang Liu,Peng Qian,Xiaoyang Wang,Yuan Zhuang,Lin Qiu,Xun Wang
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:: 1-1 被引量:64
标识
DOI:10.1109/tkde.2021.3095196
摘要

Smart contract vulnerability detection draws extensive attention in recent years due to the substantial losses caused by hacker-attacks. Existing efforts for contract security analysis heavily rely on rigid rules defined by experts, which is labor-intensive and non-scalable. More importantly, expert-defined rules tend to be error-prone and suffer the inherent risk of being cheated by crafty attackers. Recent researches focus on the symbolic execution and formal analysis of smart contract for vulnerability detection, yet to achieve a precise and scalable solution. Although several methods have been proposed to detect vulnerabilities in smart contracts, there is still a lack of effort that considers combining expert-defined security patterns with deep neural networks. In this paper, we explore using graph neural networks and expert knowledge for smart contract vulnerability detection. Specifically, we cast the rich control- and data- flow semantics of the source code into a contract graph. Then, we propose a novel temporal message propagation network to extract graph feature from the normalized graph, and combine the graph feature with expert patterns to yield a final detection system. Extensive experiments are conducted on all the smart contracts that have source code in two platforms. Empirical results show significant accuracy improvements over state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助刘辰龙采纳,获得10
1秒前
mol发布了新的文献求助10
2秒前
yzx发布了新的文献求助10
2秒前
li发布了新的文献求助30
2秒前
2秒前
斯文败类应助明月清风采纳,获得10
3秒前
科研通AI5应助minjeong采纳,获得10
3秒前
3秒前
3秒前
4秒前
浮游应助乌鲁鲁采纳,获得10
4秒前
自由山槐完成签到,获得积分10
5秒前
刘枫其发布了新的文献求助10
5秒前
汉堡包应助冷酷的芷容采纳,获得10
5秒前
SciGPT应助求学采纳,获得10
5秒前
5秒前
6秒前
0406完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
8秒前
8秒前
科研通AI6应助熙熙然采纳,获得10
8秒前
8秒前
8秒前
Orange应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
华仔应助科研通管家采纳,获得10
9秒前
NexusExplorer应助自觉梦菲采纳,获得10
9秒前
9秒前
小二郎应助科研通管家采纳,获得10
9秒前
小杭76应助科研通管家采纳,获得10
9秒前
liman应助科研通管家采纳,获得10
10秒前
星弟发布了新的文献求助10
10秒前
打打应助科研通管家采纳,获得10
10秒前
10秒前
哈基米德应助科研通管家采纳,获得20
10秒前
Owen应助科研通管家采纳,获得10
11秒前
大个应助科研通管家采纳,获得10
11秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5205765
求助须知:如何正确求助?哪些是违规求助? 4384514
关于积分的说明 13653097
捐赠科研通 4242633
什么是DOI,文献DOI怎么找? 2327576
邀请新用户注册赠送积分活动 1325326
关于科研通互助平台的介绍 1277448