Combining Graph Neural Networks with Expert Knowledge for Smart Contract Vulnerability Detection

计算机科学 可扩展性 脆弱性评估 智能合约 图形 语义学(计算机科学) 脆弱性(计算) 控制流程图 计算机安全 人工智能 机器学习 理论计算机科学 数据库 程序设计语言 心理学 心理弹性 心理治疗师 块链
作者
Zhenguang Liu,Peng Qian,Xiaoyang Wang,Yuan Zhuang,Lin Qiu,Xun Wang
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:64
标识
DOI:10.1109/tkde.2021.3095196
摘要

Smart contract vulnerability detection draws extensive attention in recent years due to the substantial losses caused by hacker-attacks. Existing efforts for contract security analysis heavily rely on rigid rules defined by experts, which is labor-intensive and non-scalable. More importantly, expert-defined rules tend to be error-prone and suffer the inherent risk of being cheated by crafty attackers. Recent researches focus on the symbolic execution and formal analysis of smart contract for vulnerability detection, yet to achieve a precise and scalable solution. Although several methods have been proposed to detect vulnerabilities in smart contracts, there is still a lack of effort that considers combining expert-defined security patterns with deep neural networks. In this paper, we explore using graph neural networks and expert knowledge for smart contract vulnerability detection. Specifically, we cast the rich control- and data- flow semantics of the source code into a contract graph. Then, we propose a novel temporal message propagation network to extract graph feature from the normalized graph, and combine the graph feature with expert patterns to yield a final detection system. Extensive experiments are conducted on all the smart contracts that have source code in two platforms. Empirical results show significant accuracy improvements over state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
机灵饼干完成签到,获得积分10
1秒前
1秒前
liuxi发布了新的文献求助10
1秒前
2秒前
有热心愿意完成签到,获得积分10
3秒前
3秒前
信含雨完成签到 ,获得积分10
4秒前
王莹莹完成签到,获得积分10
4秒前
了不起的RR完成签到,获得积分10
6秒前
清脆的乾发布了新的文献求助10
6秒前
陈露佳发布了新的文献求助10
7秒前
Hdp完成签到,获得积分10
7秒前
孤鸿发布了新的文献求助10
8秒前
hahhh7完成签到,获得积分10
9秒前
nana完成签到,获得积分10
11秒前
科研通AI6应助孤鸿采纳,获得10
12秒前
杜甫发布了新的文献求助10
12秒前
上官若男应助cccccy采纳,获得30
12秒前
XRH完成签到,获得积分10
14秒前
乐乐应助CC采纳,获得30
14秒前
14秒前
隐形曼青应助野原采纳,获得10
15秒前
英俊的铭应助清脆的乾采纳,获得10
16秒前
桐桐应助老实的柠檬采纳,获得10
16秒前
qww完成签到,获得积分10
17秒前
SciGPT应助WHUT-Batteries采纳,获得10
18秒前
斯文败类应助Yu采纳,获得30
18秒前
19秒前
19秒前
鑫鑫完成签到,获得积分10
19秒前
20秒前
深情安青应助wbp31采纳,获得10
21秒前
湖师哈登完成签到,获得积分20
22秒前
wen123发布了新的文献求助30
22秒前
量子星尘发布了新的文献求助10
23秒前
23秒前
852应助simey采纳,获得10
24秒前
24秒前
i宁发布了新的文献求助10
25秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Eurocode 7. Geotechnical design - General rules (BS EN 1997-1:2004+A1:2013) 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578523
求助须知:如何正确求助?哪些是违规求助? 4663413
关于积分的说明 14746147
捐赠科研通 4604178
什么是DOI,文献DOI怎么找? 2526874
邀请新用户注册赠送积分活动 1496464
关于科研通互助平台的介绍 1465787