亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Combining Graph Neural Networks with Expert Knowledge for Smart Contract Vulnerability Detection

计算机科学 可扩展性 脆弱性评估 智能合约 图形 语义学(计算机科学) 脆弱性(计算) 控制流程图 计算机安全 人工智能 机器学习 理论计算机科学 数据库 程序设计语言 心理学 心理弹性 心理治疗师 块链
作者
Zhenguang Liu,Peng Qian,Xiaoyang Wang,Yuan Zhuang,Lin Qiu,Xun Wang
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:64
标识
DOI:10.1109/tkde.2021.3095196
摘要

Smart contract vulnerability detection draws extensive attention in recent years due to the substantial losses caused by hacker-attacks. Existing efforts for contract security analysis heavily rely on rigid rules defined by experts, which is labor-intensive and non-scalable. More importantly, expert-defined rules tend to be error-prone and suffer the inherent risk of being cheated by crafty attackers. Recent researches focus on the symbolic execution and formal analysis of smart contract for vulnerability detection, yet to achieve a precise and scalable solution. Although several methods have been proposed to detect vulnerabilities in smart contracts, there is still a lack of effort that considers combining expert-defined security patterns with deep neural networks. In this paper, we explore using graph neural networks and expert knowledge for smart contract vulnerability detection. Specifically, we cast the rich control- and data- flow semantics of the source code into a contract graph. Then, we propose a novel temporal message propagation network to extract graph feature from the normalized graph, and combine the graph feature with expert patterns to yield a final detection system. Extensive experiments are conducted on all the smart contracts that have source code in two platforms. Empirical results show significant accuracy improvements over state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助科研通管家采纳,获得10
3秒前
15秒前
18秒前
ohhhhhoho发布了新的文献求助10
20秒前
24秒前
25秒前
28秒前
烟消云散完成签到,获得积分10
28秒前
孙泉发布了新的文献求助10
30秒前
黎明前发布了新的文献求助10
32秒前
古今奇观完成签到 ,获得积分10
36秒前
黎明前完成签到,获得积分10
44秒前
48秒前
53秒前
Weiyu完成签到 ,获得积分10
56秒前
MiaCong完成签到 ,获得积分10
58秒前
阿玖完成签到 ,获得积分10
1分钟前
完美世界应助zyw采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
qc完成签到,获得积分20
1分钟前
qc发布了新的文献求助10
1分钟前
1分钟前
1分钟前
撒旦asd完成签到,获得积分20
1分钟前
1分钟前
1分钟前
撒旦asd发布了新的文献求助10
1分钟前
1分钟前
1分钟前
leyellows完成签到 ,获得积分10
1分钟前
取法乎上完成签到 ,获得积分10
1分钟前
安青兰完成签到 ,获得积分10
1分钟前
1分钟前
zyw完成签到,获得积分10
1分钟前
醉熏的灵完成签到 ,获得积分10
1分钟前
zyw发布了新的文献求助10
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5731795
求助须知:如何正确求助?哪些是违规求助? 5333347
关于积分的说明 15321689
捐赠科研通 4877666
什么是DOI,文献DOI怎么找? 2620510
邀请新用户注册赠送积分活动 1569823
关于科研通互助平台的介绍 1526285