Combining Graph Neural Networks with Expert Knowledge for Smart Contract Vulnerability Detection

计算机科学 可扩展性 脆弱性评估 智能合约 图形 语义学(计算机科学) 脆弱性(计算) 控制流程图 计算机安全 人工智能 机器学习 理论计算机科学 数据库 程序设计语言 心理学 心理弹性 心理治疗师 块链
作者
Zhenguang Liu,Peng Qian,Xiaoyang Wang,Yuan Zhuang,Lin Qiu,Xun Wang
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:64
标识
DOI:10.1109/tkde.2021.3095196
摘要

Smart contract vulnerability detection draws extensive attention in recent years due to the substantial losses caused by hacker-attacks. Existing efforts for contract security analysis heavily rely on rigid rules defined by experts, which is labor-intensive and non-scalable. More importantly, expert-defined rules tend to be error-prone and suffer the inherent risk of being cheated by crafty attackers. Recent researches focus on the symbolic execution and formal analysis of smart contract for vulnerability detection, yet to achieve a precise and scalable solution. Although several methods have been proposed to detect vulnerabilities in smart contracts, there is still a lack of effort that considers combining expert-defined security patterns with deep neural networks. In this paper, we explore using graph neural networks and expert knowledge for smart contract vulnerability detection. Specifically, we cast the rich control- and data- flow semantics of the source code into a contract graph. Then, we propose a novel temporal message propagation network to extract graph feature from the normalized graph, and combine the graph feature with expert patterns to yield a final detection system. Extensive experiments are conducted on all the smart contracts that have source code in two platforms. Empirical results show significant accuracy improvements over state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zmy完成签到,获得积分10
刚刚
yan完成签到,获得积分10
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
6666发布了新的文献求助10
2秒前
Kka完成签到 ,获得积分10
2秒前
2秒前
Ashely完成签到,获得积分20
2秒前
浮游应助Khr1stINK采纳,获得10
3秒前
刘振坤完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
zgdzhj完成签到,获得积分10
4秒前
5秒前
tf发布了新的文献求助30
5秒前
DDD完成签到,获得积分10
5秒前
糊涂的孤丝完成签到,获得积分10
5秒前
6秒前
大力小丸子关注了科研通微信公众号
6秒前
陈品琪发布了新的文献求助10
6秒前
远方发布了新的文献求助10
6秒前
6秒前
xiaokaixin完成签到,获得积分10
7秒前
樱sky完成签到,获得积分10
8秒前
cmmm完成签到 ,获得积分10
8秒前
ZIYU完成签到,获得积分10
8秒前
mmmmmMM发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
9秒前
香蕉觅云应助火柴two采纳,获得10
9秒前
zxx发布了新的文献求助10
9秒前
奶黄包应助刘鑫采纳,获得20
9秒前
hhh完成签到,获得积分10
9秒前
布兜兜完成签到,获得积分10
10秒前
10秒前
10秒前
白诺言发布了新的文献求助10
11秒前
星辰大海应助江江采纳,获得10
11秒前
11秒前
lololoan完成签到,获得积分10
11秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699679
求助须知:如何正确求助?哪些是违规求助? 5132628
关于积分的说明 15227678
捐赠科研通 4854695
什么是DOI,文献DOI怎么找? 2604865
邀请新用户注册赠送积分活动 1556246
关于科研通互助平台的介绍 1514444