自旋电子学
拓扑绝缘体
凝聚态物理
Chern类
拓扑(电路)
绝缘体(电)
铁磁性
反铁磁性
磁性
物理
电场
拓扑序
磁场
量子
量子力学
光电子学
电气工程
几何学
工程类
数学
作者
Jiaqi Cai,Dmitry Ovchinnikov,Zaiyao Fei,Minhao He,Tiancheng Song,Zhong Lin,Chong Wang,David Cobden,Jiun-Haw Chu,Yong-Tao Cui,Cui-Zu Chang,Di Xiao,Jiaqiang Yan,Xiaodong Xu
标识
DOI:10.1038/s41467-022-29259-8
摘要
The interplay between band topology and magnetism can give rise to exotic states of matter. For example, magnetically doped topological insulators can realize a Chern insulator that exhibits quantized Hall resistance at zero magnetic field. While prior works have focused on ferromagnetic systems, little is known about band topology and its manipulation in antiferromagnets. Here, we report that MnBi2Te4 is a rare platform for realizing a canted-antiferromagnetic (cAFM) Chern insulator with electrical control. We show that the Chern insulator state with Chern number C = 1 appears as the AFM to canted-AFM phase transition happens. The Chern insulator state is further confirmed by observing the unusual transition of the C = 1 state in the cAFM phase to the C = 2 orbital quantum Hall states in the magnetic field induced ferromagnetic phase. Near the cAFM-AFM phase boundary, we show that the dissipationless chiral edge transport can be toggled on and off by applying an electric field alone. We attribute this switching effect to the electrical field tuning of the exchange gap alignment between the top and bottom surfaces. Our work paves the way for future studies on topological cAFM spintronics and facilitates the development of proof-of-concept Chern insulator devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI