New approaches to predict the effect of co-occurring variants on protein characteristics

单核苷酸多态性 计算生物学 遗传变异 致病性 生物 遗传学 基因 生物信息学 基因型 微生物学
作者
David D. Holcomb,Nobuko Hamasaki-Katagiri,Kyle Laurie,Upendra Katneni,Jacob Kames,Aikaterini Alexaki,Haim Bar,Chava Kimchi-Sarfaty
出处
期刊:American Journal of Human Genetics [Elsevier]
卷期号:108 (8): 1502-1511 被引量:2
标识
DOI:10.1016/j.ajhg.2021.06.011
摘要

Predicting the effect of a mutated gene before the onset of symptoms of genetic diseases would greatly facilitate diagnosis and potentiate early intervention. There have been myriad attempts to predict the effects of single-nucleotide variants. However, the applicability of these efforts does not scale to co-occurring variants. Furthermore, an increasing number of protein therapeutics contain co-occurring nucleotide variations, adding uncertainty during development to the safety and efficiency of these drugs. Co-occurring nucleotide variants may often have synergistic, additive, or antagonistic effects on protein attributes, further complicating the task of outcome prediction. We tested four models based on the cooperative and antagonistic effects of co-occurring variants to predict pathogenicity and effectiveness of protein therapeutics. A total of 30 attributes, including amino acid and nucleotide features, as well as existing single-variant effect prediction tools, were considered on the basis of previous studies on single-nucleotide variants. Importantly, the effects of synonymous variants, often seen in protein therapeutics, were also included in our models. We used 12 datasets of people with monogenic diseases and controls with co-occurring genetic variants to evaluate the accuracy of our models, accomplishing a degree of accuracy comparable to that of prediction tools for single-nucleotide variants. More importantly, our framework is generalizable to new, well-curated datasets of monogenic diseases and new variant scoring tools. This approach successfully assists in addressing the challenging task of predicting the effect of co-occurring variants on pathogenicity and protein effectiveness and is applicable for a wide range of protein therapeutics and genetic diseases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
星辰大海应助小晶豆采纳,获得10
1秒前
秦磊完成签到,获得积分10
2秒前
好运来完成签到 ,获得积分10
2秒前
4秒前
5秒前
姬绪建发布了新的文献求助10
5秒前
果子完成签到 ,获得积分10
5秒前
简单澜发布了新的文献求助10
6秒前
6秒前
叶白山发布了新的文献求助10
6秒前
阿白完成签到 ,获得积分10
6秒前
JG完成签到,获得积分10
6秒前
7秒前
7秒前
TT完成签到,获得积分10
8秒前
强强仔仔完成签到 ,获得积分10
8秒前
社牛小柯完成签到,获得积分10
8秒前
蔡蔡发布了新的文献求助10
9秒前
香蕉觅云应助boltos采纳,获得10
9秒前
penghuiye完成签到,获得积分10
9秒前
9秒前
9秒前
刘玲完成签到 ,获得积分10
9秒前
李科通发布了新的文献求助10
10秒前
Nerozhang完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
冇_完成签到 ,获得积分10
10秒前
爱笑凤凰完成签到,获得积分10
10秒前
星辰漫步完成签到,获得积分10
11秒前
HeiHei发布了新的文献求助10
12秒前
argdqweaf发布了新的文献求助10
12秒前
Polar_bear完成签到,获得积分10
13秒前
生动的沛白完成签到 ,获得积分10
13秒前
计划逃跑发布了新的文献求助10
13秒前
郭雪发布了新的文献求助20
14秒前
zss发布了新的文献求助30
15秒前
幸福凤妖完成签到,获得积分20
15秒前
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5766112
求助须知:如何正确求助?哪些是违规求助? 5563948
关于积分的说明 15411404
捐赠科研通 4900416
什么是DOI,文献DOI怎么找? 2636460
邀请新用户注册赠送积分活动 1584661
关于科研通互助平台的介绍 1539932