New approaches to predict the effect of co-occurring variants on protein characteristics

单核苷酸多态性 计算生物学 遗传变异 致病性 生物 遗传学 基因 生物信息学 基因型 微生物学
作者
David D. Holcomb,Nobuko Hamasaki-Katagiri,Kyle Laurie,Upendra Katneni,Jacob Kames,Aikaterini Alexaki,Haim Bar,Chava Kimchi-Sarfaty
出处
期刊:American Journal of Human Genetics [Elsevier]
卷期号:108 (8): 1502-1511 被引量:2
标识
DOI:10.1016/j.ajhg.2021.06.011
摘要

Predicting the effect of a mutated gene before the onset of symptoms of genetic diseases would greatly facilitate diagnosis and potentiate early intervention. There have been myriad attempts to predict the effects of single-nucleotide variants. However, the applicability of these efforts does not scale to co-occurring variants. Furthermore, an increasing number of protein therapeutics contain co-occurring nucleotide variations, adding uncertainty during development to the safety and efficiency of these drugs. Co-occurring nucleotide variants may often have synergistic, additive, or antagonistic effects on protein attributes, further complicating the task of outcome prediction. We tested four models based on the cooperative and antagonistic effects of co-occurring variants to predict pathogenicity and effectiveness of protein therapeutics. A total of 30 attributes, including amino acid and nucleotide features, as well as existing single-variant effect prediction tools, were considered on the basis of previous studies on single-nucleotide variants. Importantly, the effects of synonymous variants, often seen in protein therapeutics, were also included in our models. We used 12 datasets of people with monogenic diseases and controls with co-occurring genetic variants to evaluate the accuracy of our models, accomplishing a degree of accuracy comparable to that of prediction tools for single-nucleotide variants. More importantly, our framework is generalizable to new, well-curated datasets of monogenic diseases and new variant scoring tools. This approach successfully assists in addressing the challenging task of predicting the effect of co-occurring variants on pathogenicity and protein effectiveness and is applicable for a wide range of protein therapeutics and genetic diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无敌暴龙战士完成签到 ,获得积分10
刚刚
Elena完成签到 ,获得积分10
刚刚
冰山未闯完成签到,获得积分10
1秒前
1秒前
那个笨笨完成签到,获得积分10
2秒前
2秒前
手撕蛋完成签到 ,获得积分10
3秒前
羊皮大哈发布了新的文献求助10
3秒前
lhy完成签到,获得积分10
3秒前
ddd发布了新的文献求助10
4秒前
笑点低白秋完成签到,获得积分10
4秒前
wangwangdui完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
YellowStar发布了新的文献求助30
6秒前
6秒前
7秒前
充电宝应助13066751736采纳,获得10
7秒前
刘黎煊发布了新的文献求助10
7秒前
8秒前
费小曼发布了新的文献求助10
8秒前
8秒前
9秒前
fxx发布了新的文献求助20
9秒前
9秒前
勤劳梦凡完成签到,获得积分20
9秒前
9秒前
神勇代荷完成签到,获得积分10
9秒前
homie完成签到,获得积分10
10秒前
脑洞疼应助聪明的青雪采纳,获得10
10秒前
紫陌完成签到,获得积分10
10秒前
sys549发布了新的文献求助10
10秒前
阿湫完成签到,获得积分10
11秒前
材小料发布了新的文献求助10
12秒前
Xbr发布了新的文献求助10
12秒前
Eris完成签到,获得积分10
12秒前
ygg完成签到,获得积分10
13秒前
shl发布了新的文献求助10
13秒前
紫陌发布了新的文献求助10
13秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167852
求助须知:如何正确求助?哪些是违规求助? 2819220
关于积分的说明 7925634
捐赠科研通 2479112
什么是DOI,文献DOI怎么找? 1320642
科研通“疑难数据库(出版商)”最低求助积分说明 632856
版权声明 602443