New approaches to predict the effect of co-occurring variants on protein characteristics

单核苷酸多态性 计算生物学 遗传变异 致病性 生物 遗传学 基因 生物信息学 基因型 微生物学
作者
David D. Holcomb,Nobuko Hamasaki-Katagiri,Kyle Laurie,Upendra Katneni,Jacob Kames,Aikaterini Alexaki,Haim Bar,Chava Kimchi-Sarfaty
出处
期刊:American Journal of Human Genetics [Elsevier]
卷期号:108 (8): 1502-1511 被引量:2
标识
DOI:10.1016/j.ajhg.2021.06.011
摘要

Predicting the effect of a mutated gene before the onset of symptoms of genetic diseases would greatly facilitate diagnosis and potentiate early intervention. There have been myriad attempts to predict the effects of single-nucleotide variants. However, the applicability of these efforts does not scale to co-occurring variants. Furthermore, an increasing number of protein therapeutics contain co-occurring nucleotide variations, adding uncertainty during development to the safety and efficiency of these drugs. Co-occurring nucleotide variants may often have synergistic, additive, or antagonistic effects on protein attributes, further complicating the task of outcome prediction. We tested four models based on the cooperative and antagonistic effects of co-occurring variants to predict pathogenicity and effectiveness of protein therapeutics. A total of 30 attributes, including amino acid and nucleotide features, as well as existing single-variant effect prediction tools, were considered on the basis of previous studies on single-nucleotide variants. Importantly, the effects of synonymous variants, often seen in protein therapeutics, were also included in our models. We used 12 datasets of people with monogenic diseases and controls with co-occurring genetic variants to evaluate the accuracy of our models, accomplishing a degree of accuracy comparable to that of prediction tools for single-nucleotide variants. More importantly, our framework is generalizable to new, well-curated datasets of monogenic diseases and new variant scoring tools. This approach successfully assists in addressing the challenging task of predicting the effect of co-occurring variants on pathogenicity and protein effectiveness and is applicable for a wide range of protein therapeutics and genetic diseases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nn发布了新的文献求助10
1秒前
麻绳青年完成签到,获得积分10
3秒前
3秒前
5秒前
5秒前
6秒前
zgxyws完成签到,获得积分10
6秒前
7秒前
SciGPT应助lms采纳,获得10
7秒前
cqh完成签到 ,获得积分10
7秒前
钰c发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
9秒前
山谷与花发布了新的文献求助10
10秒前
zhuangzhuang发布了新的文献求助10
10秒前
马里奥发布了新的文献求助10
10秒前
呢喃私语发布了新的文献求助10
11秒前
11秒前
xiezhuren发布了新的文献求助10
11秒前
12秒前
12秒前
玖爱完成签到,获得积分10
13秒前
14秒前
完美世界应助uu采纳,获得10
14秒前
JH发布了新的文献求助10
15秒前
钰c完成签到,获得积分10
15秒前
Fei关注了科研通微信公众号
16秒前
VV发布了新的文献求助10
17秒前
繁星长明发布了新的文献求助10
17秒前
17秒前
大个应助白居易采纳,获得10
17秒前
camille完成签到,获得积分10
18秒前
科研通AI6应助bcl采纳,获得10
18秒前
Ava应助zhuangzhuang采纳,获得10
18秒前
小马甲应助曾经的青槐采纳,获得10
21秒前
科研通AI6应助ddddddd采纳,获得10
22秒前
研友_VZG7GZ应助风中的丝袜采纳,获得10
23秒前
内向苡发布了新的文献求助10
23秒前
wsy发布了新的文献求助10
24秒前
zhuangzhuang完成签到,获得积分10
25秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Eurocode 7. Geotechnical design - General rules (BS EN 1997-1:2004+A1:2013) 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578739
求助须知:如何正确求助?哪些是违规求助? 4663520
关于积分的说明 14747032
捐赠科研通 4604483
什么是DOI,文献DOI怎么找? 2526947
邀请新用户注册赠送积分活动 1496563
关于科研通互助平台的介绍 1465838