New approaches to predict the effect of co-occurring variants on protein characteristics

单核苷酸多态性 计算生物学 遗传变异 致病性 生物 遗传学 基因 生物信息学 基因型 微生物学
作者
David D. Holcomb,Nobuko Hamasaki-Katagiri,Kyle Laurie,Upendra Katneni,Jacob Kames,Aikaterini Alexaki,Haim Bar,Chava Kimchi-Sarfaty
出处
期刊:American Journal of Human Genetics [Elsevier BV]
卷期号:108 (8): 1502-1511 被引量:2
标识
DOI:10.1016/j.ajhg.2021.06.011
摘要

Predicting the effect of a mutated gene before the onset of symptoms of genetic diseases would greatly facilitate diagnosis and potentiate early intervention. There have been myriad attempts to predict the effects of single-nucleotide variants. However, the applicability of these efforts does not scale to co-occurring variants. Furthermore, an increasing number of protein therapeutics contain co-occurring nucleotide variations, adding uncertainty during development to the safety and efficiency of these drugs. Co-occurring nucleotide variants may often have synergistic, additive, or antagonistic effects on protein attributes, further complicating the task of outcome prediction. We tested four models based on the cooperative and antagonistic effects of co-occurring variants to predict pathogenicity and effectiveness of protein therapeutics. A total of 30 attributes, including amino acid and nucleotide features, as well as existing single-variant effect prediction tools, were considered on the basis of previous studies on single-nucleotide variants. Importantly, the effects of synonymous variants, often seen in protein therapeutics, were also included in our models. We used 12 datasets of people with monogenic diseases and controls with co-occurring genetic variants to evaluate the accuracy of our models, accomplishing a degree of accuracy comparable to that of prediction tools for single-nucleotide variants. More importantly, our framework is generalizable to new, well-curated datasets of monogenic diseases and new variant scoring tools. This approach successfully assists in addressing the challenging task of predicting the effect of co-occurring variants on pathogenicity and protein effectiveness and is applicable for a wide range of protein therapeutics and genetic diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
悦耳易烟发布了新的文献求助10
2秒前
2秒前
zjw完成签到,获得积分10
4秒前
5秒前
sqz发布了新的文献求助10
6秒前
艺涵完成签到,获得积分10
6秒前
腼腆的洪纲完成签到,获得积分10
7秒前
及禾应助李田田采纳,获得10
7秒前
wanci应助微微采纳,获得10
7秒前
8秒前
9秒前
你今天学了多少完成签到 ,获得积分10
10秒前
11秒前
12秒前
林昀完成签到 ,获得积分10
12秒前
冷静的缘分完成签到 ,获得积分10
12秒前
碧蓝问玉发布了新的文献求助10
13秒前
sqz完成签到,获得积分10
13秒前
14秒前
14秒前
烟花应助怕孤单的绿柏采纳,获得10
14秒前
Benzhdw完成签到,获得积分10
14秒前
淡淡夕阳发布了新的文献求助10
15秒前
15秒前
GT发布了新的文献求助10
15秒前
念姬发布了新的文献求助10
17秒前
keyaner完成签到,获得积分10
18秒前
睡到自然醒完成签到 ,获得积分10
20秒前
minever白完成签到,获得积分10
20秒前
沉默的鱼人完成签到 ,获得积分10
21秒前
黄鲁婧发布了新的文献求助10
22秒前
大个应助二三采纳,获得10
22秒前
榴莲完成签到,获得积分10
23秒前
我是老大应助GT采纳,获得10
24秒前
24秒前
沉默的鱼人关注了科研通微信公众号
24秒前
nice1025完成签到,获得积分10
25秒前
lym97完成签到 ,获得积分10
26秒前
26秒前
爱吃饭的黄哥完成签到,获得积分10
27秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966147
求助须知:如何正确求助?哪些是违规求助? 3511532
关于积分的说明 11158765
捐赠科研通 3246148
什么是DOI,文献DOI怎么找? 1793309
邀请新用户注册赠送积分活动 874295
科研通“疑难数据库(出版商)”最低求助积分说明 804343