Hierarchical Temporal Attention Network for Thyroid Nodule Recognition Using Dynamic CEUS Imaging

人工智能 计算机科学 甲状腺结节 杠杆(统计) 模态(人机交互) 超声造影 深度学习 结核(地质) 模式识别(心理学) 甲状腺 放射科 超声波 医学 生物 内科学 古生物学
作者
Peng Wan,Fang Chen,Chunrui Liu,Wentao Kong,Daoqiang Zhang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:40 (6): 1646-1660 被引量:25
标识
DOI:10.1109/tmi.2021.3063421
摘要

Contrast-enhanced ultrasound (CEUS) has emerged as a popular imaging modality in thyroid nodule diagnosis due to its ability to visualize vascular distribution in real time. Recently, a number of learning-based methods are dedicated to mine pathological-related enhancement dynamics and make prediction at one step, ignoring a native diagnostic dependency. In clinics, the differentiation of benign or malignant nodules always precedes the recognition of pathological types. In this paper, we propose a novel hierarchical temporal attention network (HiTAN) for thyroid nodule diagnosis using dynamic CEUS imaging, which unifies dynamic enhancement feature learning and hierarchical nodules classification into a deep framework. Specifically, this method decomposes the diagnosis of nodules into an ordered two-stage classification task, where diagnostic dependency is modeled by Gated Recurrent Units (GRUs). Besides, we design a local-to-global temporal aggregation (LGTA) operator to perform a comprehensive temporal fusion along the hierarchical prediction path. Particularly, local temporal information is defined as typical enhancement patterns identified with the guidance of perfusion representation learned from the differentiation level. Then, we leverage an attention mechanism to embed global enhancement dynamics into each identified salient pattern. In this study, we evaluate the proposed HiTAN method on the collected CEUS dataset of thyroid nodules. Extensive experimental results validate the efficacy of dynamic patterns learning, fusion and hierarchical diagnosis mechanism.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
华仔应助chenng采纳,获得10
1秒前
2秒前
2秒前
充电宝应助停云濛濛采纳,获得10
2秒前
3秒前
4秒前
4秒前
章鑫发布了新的文献求助30
4秒前
5秒前
6秒前
6秒前
酷波er应助风趣的傲之采纳,获得10
7秒前
研友_VZG7GZ应助Gengar采纳,获得10
7秒前
AUK发布了新的文献求助10
8秒前
本恩宁完成签到 ,获得积分10
8秒前
ioio发布了新的文献求助10
8秒前
22发布了新的文献求助10
8秒前
9秒前
huazi发布了新的文献求助10
10秒前
10秒前
落寞凌波完成签到,获得积分20
10秒前
12秒前
缓慢尔槐完成签到,获得积分10
13秒前
13秒前
风清扬应助22采纳,获得10
13秒前
15秒前
wyx发布了新的文献求助10
15秒前
16秒前
小二郎应助美味的薯片采纳,获得10
16秒前
huazi完成签到,获得积分10
16秒前
17秒前
斑比完成签到,获得积分10
17秒前
缥缈的寻琴应助缓慢尔槐采纳,获得10
17秒前
18秒前
安详的嵩发布了新的文献求助10
18秒前
章鑫完成签到,获得积分10
19秒前
19秒前
默默的素阴完成签到 ,获得积分10
19秒前
乔孟婷发布了新的文献求助10
19秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998235
求助须知:如何正确求助?哪些是违规求助? 3537729
关于积分的说明 11272361
捐赠科研通 3276854
什么是DOI,文献DOI怎么找? 1807154
邀请新用户注册赠送积分活动 883757
科研通“疑难数据库(出版商)”最低求助积分说明 810014