胞外囊泡
癌症治疗
细胞外
占用率
药品
靶向治疗
靶向给药
药物输送
医学
癌症
细胞外小泡
纳米技术
药理学
微泡
化学
生物
内科学
材料科学
细胞生物学
基因
小RNA
生物化学
生态学
作者
Sijun Pan,Yan Zhang,Auginia Natalia,Carine Z. J. Lim,Nicholas R. Y. Ho,Balram Chowbay,Tze Ping Loh,John Kit Chung Tam,Huilin Shao
标识
DOI:10.1038/s41565-021-00872-w
摘要
Current technologies to measure drug-target interactions require complex processing and invasive tissue biopsies, limiting their clinical utility for cancer treatment monitoring. Here we develop an analytical platform that leverages circulating extracellular vesicles (EVs) for activity-based assessment of tumour-specific drug-target interactions in patient blood samples. The technology, termed extracellular vesicle monitoring of small-molecule chemical occupancy and protein expression (ExoSCOPE), utilizes bio-orthogonal probe amplification and spatial patterning of molecular reactions within matched plasmonic nanoring resonators to achieve in situ analysis of EV drug dynamics. It measures changes in drug occupancy and protein composition in molecular subpopulations of EVs. When used to monitor various targeted therapies, the ExoSCOPE revealed EV signatures that closely reflected cellular treatment efficacy. We further applied the technology for clinical cancer diagnostics and treatment monitoring. Using a small volume of blood, the ExoSCOPE accurately classified disease status and rapidly distinguished between targeted treatment outcomes, within 24 h after treatment initiation.
科研通智能强力驱动
Strongly Powered by AbleSci AI