Spatio-temporal K-NN prediction of traffic state based on statistical features in neighbouring roads

流量(计算机网络) 人工神经网络 计算机科学 基于Kerner三相理论的交通拥堵重构 交通拥挤 聚类分析 运输工程 人工智能 工程类 计算机网络
作者
Bagus Priambodo,Azlina Ahmad,Rabiah Abdul Kadir
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:40 (5): 9059-9072 被引量:7
标识
DOI:10.3233/jifs-201493
摘要

Traffic congestion on a road results in a ripple effect to other neighbouring roads. Previous research revealed existence of spatial correlation on neighbouring roads. Similar traffic patterns with regards to day and time can be seen amongst roads in a neighbouring area. Presently, nonlinear models of neural network are applied on historical data to predict traffic congestion. Even though neural network has successfully modelled complex relationships, more time is needed to train the network. A non-parametric approach, the k-nearest neighbour (K-NN) is another method for forecasting traffic condition which can capture the nonlinear characteristics of traffic flow. An earlier study has been done to predict traffic flow using K-NN based on connected roads (both downstream and upstream). However, impact of road congestion is not only to connected roads, but also to roads surrounding it. Surrounding roads that are impacted by road congestion are those having ‘high relationship’ with neighbouring roads. Thus, this study aims to predict traffic state using K-NN by determining high relationship roads within neighbouring roads. We determine the highest relationship neighbouring roads by clustering the surrounding roads by combining grey level co-occurrence matrix (GLCM) with k-means. Our experiments showed that prediction of traffic state using K-NN based on high relationship roads using both GLCM and k-means produced better accuracy than using k-means only.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开心夏云应助asiera采纳,获得10
刚刚
无语的鱼完成签到,获得积分10
1秒前
宓不评发布了新的文献求助10
1秒前
赘婿应助赵哥采纳,获得10
2秒前
2秒前
所所应助JxJ采纳,获得10
3秒前
吐司大王发布了新的文献求助10
3秒前
nan发布了新的文献求助10
4秒前
阿yueyue完成签到 ,获得积分10
4秒前
sq完成签到 ,获得积分10
6秒前
6秒前
6秒前
6秒前
6秒前
雪123发布了新的文献求助10
7秒前
7秒前
more应助浅浅采纳,获得10
8秒前
小小发布了新的文献求助10
9秒前
9秒前
stronger发布了新的文献求助10
10秒前
fan发布了新的文献求助10
11秒前
Onyx完成签到,获得积分20
11秒前
TO完成签到,获得积分10
11秒前
Alwaite完成签到 ,获得积分10
12秒前
12秒前
大模型应助不晚采纳,获得10
12秒前
孤独梦曼发布了新的文献求助10
13秒前
大宇完成签到,获得积分10
13秒前
章鱼大丸子完成签到,获得积分10
14秒前
小顾完成签到,获得积分20
14秒前
YESKY发布了新的文献求助10
14秒前
完美世界应助Kevin采纳,获得10
15秒前
adrenline完成签到,获得积分10
16秒前
SciGPT应助Hh采纳,获得10
16秒前
peanuttt完成签到 ,获得积分10
17秒前
17秒前
脑洞疼应助章早立采纳,获得10
17秒前
19秒前
科目三应助AME采纳,获得10
19秒前
19秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156528
求助须知:如何正确求助?哪些是违规求助? 2807966
关于积分的说明 7875565
捐赠科研通 2466256
什么是DOI,文献DOI怎么找? 1312779
科研通“疑难数据库(出版商)”最低求助积分说明 630273
版权声明 601919