Spatio-temporal K-NN prediction of traffic state based on statistical features in neighbouring roads

流量(计算机网络) 人工神经网络 计算机科学 基于Kerner三相理论的交通拥堵重构 交通拥挤 聚类分析 运输工程 人工智能 工程类 计算机网络
作者
Bagus Priambodo,Azlina Ahmad,Rabiah Abdul Kadir
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:40 (5): 9059-9072 被引量:7
标识
DOI:10.3233/jifs-201493
摘要

Traffic congestion on a road results in a ripple effect to other neighbouring roads. Previous research revealed existence of spatial correlation on neighbouring roads. Similar traffic patterns with regards to day and time can be seen amongst roads in a neighbouring area. Presently, nonlinear models of neural network are applied on historical data to predict traffic congestion. Even though neural network has successfully modelled complex relationships, more time is needed to train the network. A non-parametric approach, the k-nearest neighbour (K-NN) is another method for forecasting traffic condition which can capture the nonlinear characteristics of traffic flow. An earlier study has been done to predict traffic flow using K-NN based on connected roads (both downstream and upstream). However, impact of road congestion is not only to connected roads, but also to roads surrounding it. Surrounding roads that are impacted by road congestion are those having ‘high relationship’ with neighbouring roads. Thus, this study aims to predict traffic state using K-NN by determining high relationship roads within neighbouring roads. We determine the highest relationship neighbouring roads by clustering the surrounding roads by combining grey level co-occurrence matrix (GLCM) with k-means. Our experiments showed that prediction of traffic state using K-NN based on high relationship roads using both GLCM and k-means produced better accuracy than using k-means only.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
铁柱完成签到,获得积分10
刚刚
刚刚
孟一完成签到,获得积分10
刚刚
LIU完成签到 ,获得积分10
刚刚
刚刚
刚刚
charon完成签到,获得积分10
刚刚
刚刚
Tu完成签到,获得积分10
1秒前
zzZ完成签到,获得积分20
1秒前
晨屿发布了新的文献求助10
1秒前
Kotory完成签到,获得积分10
1秒前
能干的玉兰完成签到,获得积分20
2秒前
花间一壶酒完成签到,获得积分10
2秒前
CodeCraft应助Daisy采纳,获得10
2秒前
二丙发布了新的文献求助10
2秒前
QOP完成签到,获得积分0
3秒前
燧人氏完成签到,获得积分10
3秒前
3秒前
湖畔望月寒完成签到,获得积分20
3秒前
冷如松完成签到,获得积分10
4秒前
4秒前
shan发布了新的文献求助10
4秒前
Faier完成签到,获得积分10
4秒前
4秒前
yiyi完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
韩soso发布了新的文献求助10
5秒前
英姑应助lz123采纳,获得10
5秒前
14完成签到 ,获得积分10
6秒前
6秒前
dulcetlemon完成签到 ,获得积分10
6秒前
7秒前
动听衬衫发布了新的文献求助10
7秒前
ws_WS_完成签到 ,获得积分10
8秒前
8秒前
wyyt完成签到,获得积分10
8秒前
烨然发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573926
求助须知:如何正确求助?哪些是违规求助? 4660203
关于积分的说明 14728382
捐赠科研通 4599980
什么是DOI,文献DOI怎么找? 2524638
邀请新用户注册赠送积分活动 1494989
关于科研通互助平台的介绍 1465005