Spatio-temporal K-NN prediction of traffic state based on statistical features in neighbouring roads

流量(计算机网络) 人工神经网络 计算机科学 基于Kerner三相理论的交通拥堵重构 交通拥挤 聚类分析 运输工程 人工智能 工程类 计算机网络
作者
Bagus Priambodo,Azlina Ahmad,Rabiah Abdul Kadir
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:40 (5): 9059-9072 被引量:7
标识
DOI:10.3233/jifs-201493
摘要

Traffic congestion on a road results in a ripple effect to other neighbouring roads. Previous research revealed existence of spatial correlation on neighbouring roads. Similar traffic patterns with regards to day and time can be seen amongst roads in a neighbouring area. Presently, nonlinear models of neural network are applied on historical data to predict traffic congestion. Even though neural network has successfully modelled complex relationships, more time is needed to train the network. A non-parametric approach, the k-nearest neighbour (K-NN) is another method for forecasting traffic condition which can capture the nonlinear characteristics of traffic flow. An earlier study has been done to predict traffic flow using K-NN based on connected roads (both downstream and upstream). However, impact of road congestion is not only to connected roads, but also to roads surrounding it. Surrounding roads that are impacted by road congestion are those having ‘high relationship’ with neighbouring roads. Thus, this study aims to predict traffic state using K-NN by determining high relationship roads within neighbouring roads. We determine the highest relationship neighbouring roads by clustering the surrounding roads by combining grey level co-occurrence matrix (GLCM) with k-means. Our experiments showed that prediction of traffic state using K-NN based on high relationship roads using both GLCM and k-means produced better accuracy than using k-means only.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dummy111发布了新的文献求助10
刚刚
一起长大的约定完成签到,获得积分10
1秒前
Ocean完成签到,获得积分10
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
64658应助科研通管家采纳,获得10
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
bkagyin应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
Orange应助科研通管家采纳,获得30
2秒前
Wells应助科研通管家采纳,获得10
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
allofme发布了新的文献求助10
2秒前
2秒前
乐乐应助放飞的羊驼采纳,获得10
2秒前
Zx_1993应助科研通管家采纳,获得10
2秒前
李爱国应助科研通管家采纳,获得30
2秒前
2秒前
ChatGPT发布了新的文献求助10
2秒前
2秒前
3秒前
不安青牛应助内向小熊猫采纳,获得10
3秒前
4秒前
隐形晓兰完成签到,获得积分10
4秒前
4秒前
浮游应助xiaohunagya采纳,获得10
4秒前
梁子完成签到,获得积分10
4秒前
5秒前
共享精神应助yysghr采纳,获得10
5秒前
山青完成签到,获得积分10
5秒前
cat关闭了cat文献求助
6秒前
指哪打哪发布了新的文献求助10
6秒前
晚来客完成签到,获得积分10
6秒前
www完成签到,获得积分10
7秒前
一起长大的约定关注了科研通微信公众号
7秒前
英姑应助王大京采纳,获得10
8秒前
10秒前
研友_LX77q8发布了新的文献求助10
10秒前
CheetahAzure发布了新的文献求助10
11秒前
jst完成签到,获得积分10
11秒前
天天快乐应助勤奋的凌翠采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Research Handbook on Law and Political Economy Second Edition 398
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4559624
求助须知:如何正确求助?哪些是违规求助? 3986027
关于积分的说明 12341437
捐赠科研通 3656691
什么是DOI,文献DOI怎么找? 2014540
邀请新用户注册赠送积分活动 1049268
科研通“疑难数据库(出版商)”最低求助积分说明 937586