Spatio-temporal K-NN prediction of traffic state based on statistical features in neighbouring roads

流量(计算机网络) 人工神经网络 计算机科学 基于Kerner三相理论的交通拥堵重构 交通拥挤 聚类分析 运输工程 人工智能 工程类 计算机网络
作者
Bagus Priambodo,Azlina Ahmad,Rabiah Abdul Kadir
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:40 (5): 9059-9072 被引量:7
标识
DOI:10.3233/jifs-201493
摘要

Traffic congestion on a road results in a ripple effect to other neighbouring roads. Previous research revealed existence of spatial correlation on neighbouring roads. Similar traffic patterns with regards to day and time can be seen amongst roads in a neighbouring area. Presently, nonlinear models of neural network are applied on historical data to predict traffic congestion. Even though neural network has successfully modelled complex relationships, more time is needed to train the network. A non-parametric approach, the k-nearest neighbour (K-NN) is another method for forecasting traffic condition which can capture the nonlinear characteristics of traffic flow. An earlier study has been done to predict traffic flow using K-NN based on connected roads (both downstream and upstream). However, impact of road congestion is not only to connected roads, but also to roads surrounding it. Surrounding roads that are impacted by road congestion are those having ‘high relationship’ with neighbouring roads. Thus, this study aims to predict traffic state using K-NN by determining high relationship roads within neighbouring roads. We determine the highest relationship neighbouring roads by clustering the surrounding roads by combining grey level co-occurrence matrix (GLCM) with k-means. Our experiments showed that prediction of traffic state using K-NN based on high relationship roads using both GLCM and k-means produced better accuracy than using k-means only.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助随便取采纳,获得10
1秒前
悦耳雪巧完成签到 ,获得积分10
1秒前
mosisa发布了新的文献求助10
1秒前
可知发布了新的文献求助10
1秒前
科目三应助Ivy采纳,获得10
1秒前
土豪的长颈鹿完成签到,获得积分10
2秒前
火星老太发布了新的文献求助10
2秒前
栾玉完成签到,获得积分20
3秒前
llwen完成签到 ,获得积分10
4秒前
蓝天发布了新的文献求助10
4秒前
xu发布了新的文献求助10
4秒前
十药九茯苓完成签到,获得积分10
6秒前
rmbsLHC发布了新的文献求助10
6秒前
李健应助甲基绿采纳,获得10
7秒前
文麒发布了新的文献求助10
7秒前
7秒前
思源应助勤劳夕阳采纳,获得10
8秒前
8秒前
Hmzek完成签到,获得积分10
9秒前
zyyy完成签到,获得积分10
10秒前
xt完成签到,获得积分10
10秒前
orixero应助xu采纳,获得10
11秒前
寂寞的寄文完成签到,获得积分10
11秒前
科研通AI6应助三金采纳,获得10
11秒前
ding应助serendipity采纳,获得10
12秒前
吃西瓜皮完成签到,获得积分10
12秒前
渡劫完成签到,获得积分10
13秒前
13秒前
水123发布了新的文献求助10
13秒前
17秒前
Acer完成签到 ,获得积分10
17秒前
阿六儿完成签到,获得积分10
18秒前
共享精神应助栾玉采纳,获得10
18秒前
俊秀的莫茗关注了科研通微信公众号
19秒前
Ava应助rmbsLHC采纳,获得10
19秒前
怕黑捕发布了新的文献求助10
20秒前
粥粥粥发布了新的文献求助10
20秒前
21秒前
滕皓轩发布了新的文献求助10
22秒前
勤恳完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603755
求助须知:如何正确求助?哪些是违规求助? 4688731
关于积分的说明 14855695
捐赠科研通 4694961
什么是DOI,文献DOI怎么找? 2540965
邀请新用户注册赠送积分活动 1507143
关于科研通互助平台的介绍 1471814