Spatio-temporal K-NN prediction of traffic state based on statistical features in neighbouring roads

流量(计算机网络) 人工神经网络 计算机科学 基于Kerner三相理论的交通拥堵重构 交通拥挤 聚类分析 运输工程 人工智能 工程类 计算机网络
作者
Bagus Priambodo,Azlina Ahmad,Rabiah Abdul Kadir
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:40 (5): 9059-9072 被引量:7
标识
DOI:10.3233/jifs-201493
摘要

Traffic congestion on a road results in a ripple effect to other neighbouring roads. Previous research revealed existence of spatial correlation on neighbouring roads. Similar traffic patterns with regards to day and time can be seen amongst roads in a neighbouring area. Presently, nonlinear models of neural network are applied on historical data to predict traffic congestion. Even though neural network has successfully modelled complex relationships, more time is needed to train the network. A non-parametric approach, the k-nearest neighbour (K-NN) is another method for forecasting traffic condition which can capture the nonlinear characteristics of traffic flow. An earlier study has been done to predict traffic flow using K-NN based on connected roads (both downstream and upstream). However, impact of road congestion is not only to connected roads, but also to roads surrounding it. Surrounding roads that are impacted by road congestion are those having ‘high relationship’ with neighbouring roads. Thus, this study aims to predict traffic state using K-NN by determining high relationship roads within neighbouring roads. We determine the highest relationship neighbouring roads by clustering the surrounding roads by combining grey level co-occurrence matrix (GLCM) with k-means. Our experiments showed that prediction of traffic state using K-NN based on high relationship roads using both GLCM and k-means produced better accuracy than using k-means only.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
hannah完成签到,获得积分10
1秒前
酸奶烤着吃完成签到,获得积分10
2秒前
Owen应助391X小king采纳,获得10
3秒前
3秒前
小古完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
梦幻发布了新的文献求助10
5秒前
楚博完成签到,获得积分10
5秒前
Am1r完成签到,获得积分10
5秒前
hannah发布了新的文献求助20
6秒前
赵康康发布了新的文献求助10
6秒前
蒸盐粥发布了新的文献求助10
9秒前
9秒前
11秒前
12秒前
实验顺利完成签到,获得积分10
13秒前
不期而遇发布了新的文献求助10
13秒前
13秒前
我是老大应助拼搏的无心采纳,获得10
14秒前
15秒前
15秒前
烟花应助hay采纳,获得10
15秒前
量子星尘发布了新的文献求助10
16秒前
16秒前
XUXU发布了新的文献求助10
16秒前
老黄鱼完成签到,获得积分10
17秒前
18秒前
量子星尘发布了新的文献求助10
18秒前
顺心的海菡完成签到,获得积分10
18秒前
亦犹未进发布了新的文献求助10
20秒前
Ljq发布了新的文献求助10
21秒前
ahhh发布了新的文献求助10
21秒前
虚拟的鼠标完成签到,获得积分10
22秒前
梦幻完成签到 ,获得积分10
23秒前
25秒前
pengze发布了新的文献求助10
27秒前
27秒前
在水一方应助科研通管家采纳,获得10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729235
求助须知:如何正确求助?哪些是违规求助? 5317147
关于积分的说明 15316199
捐赠科研通 4876228
什么是DOI,文献DOI怎么找? 2619311
邀请新用户注册赠送积分活动 1568858
关于科研通互助平台的介绍 1525365