清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Spatio-temporal K-NN prediction of traffic state based on statistical features in neighbouring roads

流量(计算机网络) 人工神经网络 计算机科学 基于Kerner三相理论的交通拥堵重构 交通拥挤 聚类分析 运输工程 人工智能 工程类 计算机网络
作者
Bagus Priambodo,Azlina Ahmad,Rabiah Abdul Kadir
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:40 (5): 9059-9072 被引量:7
标识
DOI:10.3233/jifs-201493
摘要

Traffic congestion on a road results in a ripple effect to other neighbouring roads. Previous research revealed existence of spatial correlation on neighbouring roads. Similar traffic patterns with regards to day and time can be seen amongst roads in a neighbouring area. Presently, nonlinear models of neural network are applied on historical data to predict traffic congestion. Even though neural network has successfully modelled complex relationships, more time is needed to train the network. A non-parametric approach, the k-nearest neighbour (K-NN) is another method for forecasting traffic condition which can capture the nonlinear characteristics of traffic flow. An earlier study has been done to predict traffic flow using K-NN based on connected roads (both downstream and upstream). However, impact of road congestion is not only to connected roads, but also to roads surrounding it. Surrounding roads that are impacted by road congestion are those having ‘high relationship’ with neighbouring roads. Thus, this study aims to predict traffic state using K-NN by determining high relationship roads within neighbouring roads. We determine the highest relationship neighbouring roads by clustering the surrounding roads by combining grey level co-occurrence matrix (GLCM) with k-means. Our experiments showed that prediction of traffic state using K-NN based on high relationship roads using both GLCM and k-means produced better accuracy than using k-means only.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
13秒前
鸣笛应助CY采纳,获得30
25秒前
35秒前
35秒前
Rayoo发布了新的文献求助10
40秒前
DrLuffy完成签到 ,获得积分10
43秒前
852应助Rayoo采纳,获得10
50秒前
55秒前
liu完成签到,获得积分10
57秒前
sxx发布了新的文献求助10
59秒前
1分钟前
瘦瘦发布了新的文献求助10
1分钟前
眯眯眼的安雁完成签到 ,获得积分10
1分钟前
piaoaxi完成签到 ,获得积分10
1分钟前
wjx完成签到 ,获得积分10
1分钟前
louyu完成签到 ,获得积分0
1分钟前
1分钟前
甜美砖家完成签到 ,获得积分10
1分钟前
1分钟前
tan发布了新的文献求助20
1分钟前
1分钟前
荀万声完成签到,获得积分10
1分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
桐桐应助科研通管家采纳,获得10
2分钟前
风清扬应助科研通管家采纳,获得10
2分钟前
2分钟前
凉面完成签到 ,获得积分10
2分钟前
默默完成签到 ,获得积分10
2分钟前
妇产科医生完成签到 ,获得积分10
2分钟前
胡国伦完成签到 ,获得积分10
3分钟前
whuhustwit完成签到,获得积分10
3分钟前
xdd完成签到 ,获得积分10
3分钟前
3分钟前
sxx完成签到,获得积分10
3分钟前
3分钟前
cqmuluo发布了新的文献求助30
3分钟前
昔昔完成签到 ,获得积分10
3分钟前
所所应助科研通管家采纳,获得10
4分钟前
风清扬应助科研通管家采纳,获得10
4分钟前
4分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3949990
求助须知:如何正确求助?哪些是违规求助? 3495262
关于积分的说明 11076012
捐赠科研通 3225837
什么是DOI,文献DOI怎么找? 1783275
邀请新用户注册赠送积分活动 867584
科研通“疑难数据库(出版商)”最低求助积分说明 800839