A four-terminal-architecture cloud-edge-based digital twin system for thermal error control of key machining equipment in production lines

机械加工 计算机科学 钥匙(锁) GSM演进的增强数据速率 生产线 体积热力学 数控 实时计算 工程类 机械工程 人工智能 计算机安全 量子力学 物理
作者
Jialan Liu,Chi Ma,Hongquan Gui,Shilong Wang
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:166: 108488-108488 被引量:31
标识
DOI:10.1016/j.ymssp.2021.108488
摘要

Production lines are important for the high-accuracy and efficient machining of parts. The thermal error of key machining equipment in production lines has a significant effect on the geometric accuracy of machined parts. To improve the geometric accuracy of machined parts, the thermal error of key machining equipment in a production line should be controlled. Then the collection, storage, analysis, and calculation of the large-volume manufacturing data are essential. But the processing involving the large-volume manufacturing data is time-consuming and challenging, which leads to low executing efficiency. To solve the problem that the system is inefficient in the processing of the large-volume manufacturing data, a four-terminal-architecture cloud-edge-based digital twin system (CEDTS) is proposed with a reasonable functional division of four terminals, and thus the executing efficiency of CEDTS is expedited. Then the error mechanism is studied to prove the long-term memorizing behavior, and an improved seagull optimization algorithm (ISOA) is proposed based on the chaos thought to optimize the weights, thresholds, and the number of iterations of an improved long short term memory (ILSTM) network with the attention mechanism. The ISOA-ILSTM error model is embedded into the intelligent decision-making terminal of CEDTS to predict the thermal error. Moreover, a comprehensive machining error model is proposed and embedded into the intelligent decision-making terminal of CEDTS to control the thermal error. Finally, the effectiveness of CEDTS is verified on a production line. The results show that the reduction of the large-volume manufacturing data for the collection, storage, analysis, and calculation is significant. With the implementation of CEDTS, the fluctuation range of geometric errors of machined parts is reduced significantly. The executing time is reduced by more than half by CEDTS with the GPU acceleration.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
婷婷完成签到,获得积分10
刚刚
思源应助科研通管家采纳,获得10
刚刚
Jared应助科研通管家采纳,获得20
刚刚
刚刚
Owen应助科研通管家采纳,获得10
刚刚
小马甲应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
FashionBoy应助科研通管家采纳,获得10
刚刚
JamesPei应助科研通管家采纳,获得10
刚刚
BowieHuang应助科研通管家采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
ding应助科研通管家采纳,获得20
1秒前
顾矜应助科研通管家采纳,获得10
1秒前
HH应助科研通管家采纳,获得10
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
HH应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
思源应助科研通管家采纳,获得10
1秒前
Jared应助科研通管家采纳,获得20
1秒前
BowieHuang应助科研通管家采纳,获得10
1秒前
1秒前
小马甲应助科研通管家采纳,获得10
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
2秒前
ding应助科研通管家采纳,获得20
2秒前
科目三应助科研通管家采纳,获得10
2秒前
2秒前
上官若男应助科研通管家采纳,获得10
2秒前
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
2秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5776956
求助须知:如何正确求助?哪些是违规求助? 5631393
关于积分的说明 15444543
捐赠科研通 4908967
什么是DOI,文献DOI怎么找? 2641505
邀请新用户注册赠送积分活动 1589491
关于科研通互助平台的介绍 1543995