A four-terminal-architecture cloud-edge-based digital twin system for thermal error control of key machining equipment in production lines

机械加工 计算机科学 钥匙(锁) GSM演进的增强数据速率 生产线 体积热力学 数控 实时计算 工程类 机械工程 人工智能 计算机安全 量子力学 物理
作者
Jialan Liu,Chi Ma,Hongquan Gui,Shilong Wang
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:166: 108488-108488 被引量:31
标识
DOI:10.1016/j.ymssp.2021.108488
摘要

Production lines are important for the high-accuracy and efficient machining of parts. The thermal error of key machining equipment in production lines has a significant effect on the geometric accuracy of machined parts. To improve the geometric accuracy of machined parts, the thermal error of key machining equipment in a production line should be controlled. Then the collection, storage, analysis, and calculation of the large-volume manufacturing data are essential. But the processing involving the large-volume manufacturing data is time-consuming and challenging, which leads to low executing efficiency. To solve the problem that the system is inefficient in the processing of the large-volume manufacturing data, a four-terminal-architecture cloud-edge-based digital twin system (CEDTS) is proposed with a reasonable functional division of four terminals, and thus the executing efficiency of CEDTS is expedited. Then the error mechanism is studied to prove the long-term memorizing behavior, and an improved seagull optimization algorithm (ISOA) is proposed based on the chaos thought to optimize the weights, thresholds, and the number of iterations of an improved long short term memory (ILSTM) network with the attention mechanism. The ISOA-ILSTM error model is embedded into the intelligent decision-making terminal of CEDTS to predict the thermal error. Moreover, a comprehensive machining error model is proposed and embedded into the intelligent decision-making terminal of CEDTS to control the thermal error. Finally, the effectiveness of CEDTS is verified on a production line. The results show that the reduction of the large-volume manufacturing data for the collection, storage, analysis, and calculation is significant. With the implementation of CEDTS, the fluctuation range of geometric errors of machined parts is reduced significantly. The executing time is reduced by more than half by CEDTS with the GPU acceleration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顺利鸡发布了新的文献求助10
1秒前
pterionGao完成签到 ,获得积分10
2秒前
Sunny发布了新的文献求助10
3秒前
脑洞疼应助酷炫素采纳,获得10
5秒前
冰糕发布了新的文献求助30
5秒前
5秒前
nenoaowu发布了新的文献求助10
5秒前
xubee完成签到,获得积分10
6秒前
请叫我风吹麦浪应助dl采纳,获得10
6秒前
腰果虾仁完成签到,获得积分10
7秒前
爆米花应助zzzkyt采纳,获得10
7秒前
天天快乐应助noteasy采纳,获得10
10秒前
1MENINA1完成签到 ,获得积分10
11秒前
传奇3应助科研通管家采纳,获得10
11秒前
我是老大应助科研通管家采纳,获得30
11秒前
研友_VZG7GZ应助科研通管家采纳,获得10
11秒前
邓佳鑫Alan应助科研通管家采纳,获得10
11秒前
Akim应助扶风采纳,获得10
11秒前
Lucas应助科研通管家采纳,获得10
11秒前
Hello应助HY采纳,获得10
11秒前
11秒前
11秒前
orixero应助科研通管家采纳,获得10
11秒前
11秒前
12秒前
12秒前
期望应助科研通管家采纳,获得10
12秒前
12秒前
13秒前
13秒前
团子发布了新的文献求助10
15秒前
轻松小之发布了新的文献求助10
15秒前
共享精神应助nenoaowu采纳,获得10
16秒前
16秒前
冷酷慕山发布了新的文献求助10
17秒前
18秒前
vicky发布了新的文献求助30
18秒前
zzzkyt发布了新的文献求助10
19秒前
马大翔发布了新的文献求助10
20秒前
听话的大碗完成签到 ,获得积分10
20秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310354
求助须知:如何正确求助?哪些是违规求助? 2943290
关于积分的说明 8513642
捐赠科研通 2618527
什么是DOI,文献DOI怎么找? 1431125
科研通“疑难数据库(出版商)”最低求助积分说明 664383
邀请新用户注册赠送积分活动 649580