A four-terminal-architecture cloud-edge-based digital twin system for thermal error control of key machining equipment in production lines

机械加工 计算机科学 钥匙(锁) GSM演进的增强数据速率 生产线 体积热力学 数控 实时计算 工程类 机械工程 人工智能 计算机安全 量子力学 物理
作者
Jialan Liu,Chi Ma,Hongquan Gui,Shilong Wang
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:166: 108488-108488 被引量:31
标识
DOI:10.1016/j.ymssp.2021.108488
摘要

Production lines are important for the high-accuracy and efficient machining of parts. The thermal error of key machining equipment in production lines has a significant effect on the geometric accuracy of machined parts. To improve the geometric accuracy of machined parts, the thermal error of key machining equipment in a production line should be controlled. Then the collection, storage, analysis, and calculation of the large-volume manufacturing data are essential. But the processing involving the large-volume manufacturing data is time-consuming and challenging, which leads to low executing efficiency. To solve the problem that the system is inefficient in the processing of the large-volume manufacturing data, a four-terminal-architecture cloud-edge-based digital twin system (CEDTS) is proposed with a reasonable functional division of four terminals, and thus the executing efficiency of CEDTS is expedited. Then the error mechanism is studied to prove the long-term memorizing behavior, and an improved seagull optimization algorithm (ISOA) is proposed based on the chaos thought to optimize the weights, thresholds, and the number of iterations of an improved long short term memory (ILSTM) network with the attention mechanism. The ISOA-ILSTM error model is embedded into the intelligent decision-making terminal of CEDTS to predict the thermal error. Moreover, a comprehensive machining error model is proposed and embedded into the intelligent decision-making terminal of CEDTS to control the thermal error. Finally, the effectiveness of CEDTS is verified on a production line. The results show that the reduction of the large-volume manufacturing data for the collection, storage, analysis, and calculation is significant. With the implementation of CEDTS, the fluctuation range of geometric errors of machined parts is reduced significantly. The executing time is reduced by more than half by CEDTS with the GPU acceleration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
认真平蓝发布了新的文献求助10
1秒前
飞飞发布了新的文献求助30
1秒前
时米米米发布了新的文献求助10
1秒前
2秒前
大模型应助科研韭菜采纳,获得10
2秒前
455发布了新的文献求助10
3秒前
九霄发布了新的文献求助10
4秒前
小曹完成签到,获得积分10
4秒前
田様应助煜琪采纳,获得10
4秒前
修语发布了新的文献求助10
5秒前
SYMI完成签到,获得积分10
5秒前
王雅宝完成签到,获得积分10
5秒前
执着涵菱完成签到,获得积分10
5秒前
6秒前
Akim应助zhou采纳,获得100
7秒前
在水一方应助艽野采纳,获得10
7秒前
细心慕凝发布了新的文献求助10
9秒前
乘风文月完成签到,获得积分10
9秒前
JJun完成签到,获得积分10
10秒前
10秒前
hindbind发布了新的文献求助10
13秒前
汉堡包应助zhaolihua采纳,获得10
13秒前
谭志迅完成签到,获得积分10
14秒前
CAOHOU应助龙龙采纳,获得10
14秒前
14秒前
15秒前
科目三应助西海岸的风采纳,获得10
16秒前
干焱完成签到,获得积分10
16秒前
善学以致用应助zaphkiel采纳,获得10
16秒前
田然完成签到,获得积分10
16秒前
17秒前
时米米米完成签到,获得积分10
17秒前
小林完成签到,获得积分10
18秒前
猫尾巴发布了新的文献求助30
18秒前
Makta发布了新的文献求助10
18秒前
帕尼灬尼发布了新的文献求助10
20秒前
20秒前
rui完成签到,获得积分10
21秒前
21秒前
DE完成签到,获得积分20
21秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4011574
求助须知:如何正确求助?哪些是违规求助? 3551304
关于积分的说明 11308331
捐赠科研通 3285566
什么是DOI,文献DOI怎么找? 1811101
邀请新用户注册赠送积分活动 886780
科研通“疑难数据库(出版商)”最低求助积分说明 811638