A four-terminal-architecture cloud-edge-based digital twin system for thermal error control of key machining equipment in production lines

机械加工 计算机科学 钥匙(锁) GSM演进的增强数据速率 生产线 体积热力学 数控 实时计算 工程类 机械工程 人工智能 计算机安全 量子力学 物理
作者
Jialan Liu,Chi Ma,Hongquan Gui,Shilong Wang
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:166: 108488-108488 被引量:31
标识
DOI:10.1016/j.ymssp.2021.108488
摘要

Production lines are important for the high-accuracy and efficient machining of parts. The thermal error of key machining equipment in production lines has a significant effect on the geometric accuracy of machined parts. To improve the geometric accuracy of machined parts, the thermal error of key machining equipment in a production line should be controlled. Then the collection, storage, analysis, and calculation of the large-volume manufacturing data are essential. But the processing involving the large-volume manufacturing data is time-consuming and challenging, which leads to low executing efficiency. To solve the problem that the system is inefficient in the processing of the large-volume manufacturing data, a four-terminal-architecture cloud-edge-based digital twin system (CEDTS) is proposed with a reasonable functional division of four terminals, and thus the executing efficiency of CEDTS is expedited. Then the error mechanism is studied to prove the long-term memorizing behavior, and an improved seagull optimization algorithm (ISOA) is proposed based on the chaos thought to optimize the weights, thresholds, and the number of iterations of an improved long short term memory (ILSTM) network with the attention mechanism. The ISOA-ILSTM error model is embedded into the intelligent decision-making terminal of CEDTS to predict the thermal error. Moreover, a comprehensive machining error model is proposed and embedded into the intelligent decision-making terminal of CEDTS to control the thermal error. Finally, the effectiveness of CEDTS is verified on a production line. The results show that the reduction of the large-volume manufacturing data for the collection, storage, analysis, and calculation is significant. With the implementation of CEDTS, the fluctuation range of geometric errors of machined parts is reduced significantly. The executing time is reduced by more than half by CEDTS with the GPU acceleration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
科研通AI5应助朱一龙采纳,获得30
3秒前
SharonDu完成签到 ,获得积分10
4秒前
ayin完成签到,获得积分10
4秒前
5秒前
5秒前
啦啦啦完成签到,获得积分10
5秒前
coffee发布了新的文献求助10
6秒前
6秒前
科研混子发布了新的文献求助10
6秒前
咿咿呀呀发布了新的文献求助10
6秒前
酷酷碧发布了新的文献求助10
8秒前
飘逸宛丝完成签到,获得积分10
9秒前
qzaima发布了新的文献求助10
9秒前
米酒完成签到,获得积分10
11秒前
step_stone给step_stone的求助进行了留言
11秒前
乐乐应助ayin采纳,获得10
12秒前
无花果应助hhh采纳,获得10
14秒前
叁壹粑粑完成签到,获得积分10
15秒前
酷酷碧完成签到,获得积分10
15秒前
16秒前
磕盐民工完成签到,获得积分10
17秒前
17秒前
忘羡222发布了新的文献求助20
17秒前
我是老大应助TT采纳,获得10
19秒前
19秒前
19秒前
雪鸽鸽完成签到,获得积分10
20秒前
完美世界应助开心青旋采纳,获得10
20秒前
LD完成签到 ,获得积分10
22秒前
xjy完成签到 ,获得积分10
22秒前
qzaima完成签到,获得积分10
22秒前
23秒前
xueshufengbujue完成签到,获得积分10
23秒前
楼寒天发布了新的文献求助10
23秒前
24秒前
科研通AI5应助111111111采纳,获得10
25秒前
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824