亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting cardiac adverse events in patients receiving immune checkpoint inhibitors: a machine learning approach

医学 不利影响 机器学习 免疫系统 计算机科学 生物信息学 人工智能 药理学 免疫学 生物
作者
Samuel P. Heilbroner,Reed Few,Judith E. Mueller,Jitesh Chalwa,Francois Charest,Somasekhar Suryadevara,Christine Kratt,Andres Gomez-Caminero,Brian Dreyfus,Tomas G. Neilan
出处
期刊:Journal for ImmunoTherapy of Cancer [BMJ]
卷期号:9 (10): e002545-e002545 被引量:13
标识
DOI:10.1136/jitc-2021-002545
摘要

Treatment with immune checkpoint inhibitors (ICIs) has been associated with an increased rate of cardiac events. There are limited data on the risk factors that predict cardiac events in patients treated with ICIs. Therefore, we created a machine learning (ML) model to predict cardiac events in this at-risk population.We leveraged the CancerLinQ database curated by the American Society of Clinical Oncology and applied an XGBoosted decision tree to predict cardiac events in patients taking programmed death receptor-1 (PD-1) or programmed death ligand-1 (PD-L1) therapy. All curated data from patients with non-small cell lung cancer, melanoma, and renal cell carcinoma, and who were prescribed PD-1/PD-L1 therapy between 2013 and 2019, were used for training, feature interpretation, and model performance evaluation. A total of 356 potential risk factors were included in the model, including elements of patient medical history, social history, vital signs, common laboratory tests, oncological history, medication history and PD-1/PD-L1-specific factors like PD-L1 tumor expression.Our study population consisted of 4960 patients treated with PD-1/PD-L1 therapy, of whom 418 had a cardiac event. The following were key predictors of cardiac events: increased age, corticosteroids, laboratory abnormalities and medications suggestive of a history of heart disease, the extremes of weight, a lower baseline or on-treatment percentage of lymphocytes, and a higher percentage of neutrophils. The final model predicted cardiac events with an area under the curve-receiver operating characteristic of 0.65 (95% CI 0.58 to 0.75). Using our model, we divided patients into low-risk and high-risk subgroups. At 100 days, the cumulative incidence of cardiac events was 3.3% in the low-risk group and 6.1% in the high-risk group (p<0.001).ML can be used to predict cardiac events in patients taking PD-1/PD-L1 therapy. Cardiac risk was driven by immunological factors (eg, percentage of lymphocytes), oncological factors (eg, low weight), and a cardiac history.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助任震宇采纳,获得10
33秒前
37秒前
knoren发布了新的文献求助10
40秒前
Lin.隽发布了新的文献求助20
53秒前
1分钟前
ZY发布了新的文献求助10
1分钟前
1分钟前
ZY完成签到,获得积分10
1分钟前
abull完成签到,获得积分10
1分钟前
1分钟前
Lin.隽完成签到,获得积分10
1分钟前
abull发布了新的文献求助10
1分钟前
JXC完成签到,获得积分10
2分钟前
athena发布了新的文献求助10
2分钟前
清秀的怀蕊完成签到 ,获得积分10
3分钟前
knoren发布了新的文献求助10
3分钟前
可爱的函函应助knoren采纳,获得10
3分钟前
4分钟前
章鱼发布了新的文献求助10
4分钟前
章鱼完成签到,获得积分10
4分钟前
选择性哑巴完成签到 ,获得积分10
5分钟前
6分钟前
天天快乐应助threewei采纳,获得10
6分钟前
7分钟前
搜集达人应助科研通管家采纳,获得10
7分钟前
immortal发布了新的文献求助10
7分钟前
geigeigei完成签到 ,获得积分10
7分钟前
cheesy完成签到,获得积分10
7分钟前
cheesy发布了新的文献求助10
7分钟前
YOUZI完成签到,获得积分10
8分钟前
8分钟前
夜行狗完成签到,获得积分10
8分钟前
专注半烟完成签到 ,获得积分10
8分钟前
AJoe发布了新的文献求助10
8分钟前
打打应助AJoe采纳,获得10
8分钟前
乐乐应助科研通管家采纳,获得10
9分钟前
眼睛大鸡翅完成签到,获得积分10
9分钟前
落后翠柏完成签到 ,获得积分10
9分钟前
动人的书雪完成签到,获得积分10
9分钟前
shame完成签到 ,获得积分10
10分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139573
求助须知:如何正确求助?哪些是违规求助? 2790430
关于积分的说明 7795287
捐赠科研通 2446905
什么是DOI,文献DOI怎么找? 1301487
科研通“疑难数据库(出版商)”最低求助积分说明 626238
版权声明 601146