亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Hybrid embedding-based text representation for hierarchical multi-label text classification

嵌入 计算机科学 等级制度 人工智能 文字嵌入 编码 语义学(计算机科学) 自然语言处理 图形 词(群论) 代表(政治) 模式识别(心理学) 理论计算机科学 数学 法学 程序设计语言 化学 基因 经济 几何学 政治 生物化学 市场经济 政治学
作者
Yinglong Ma,Xiaofeng Liu,Lijiao Zhao,Yue Liang,Peng Zhang,Beihong Jin
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:187: 115905-115905 被引量:39
标识
DOI:10.1016/j.eswa.2021.115905
摘要

Many real-world text classification tasks often deal with a large number of closely related categories organized in a hierarchical structure or taxonomy. Hierarchical multi-label text classification (HMTC) has become rather challenging when it requires handling large sets of closely related categories. The structural features of all categories in the entire hierarchy and the word semantics of their category labels are very helpful in improving text classification accuracy over large sets of closely related categories, which has been neglected in most of existing HMTC approaches. In this paper, we present a hybrid embedding-based text representation for HMTC with high accuracy. First, the hybrid embedding consists of both graph embedding of categories in the hierarchy and their word embedding of category labels. The Structural Deep Network Embedding-based graph embedding model is used to simultaneously encode the global and local structural features of a given category in the whole hierarchy for making the category structurally discriminable. We further use the word embedding technique to encode the word semantics of each category label in the hierarchy for making different categories semantically discriminable. Second, we presented a level-by-level HMTC approach based on the bidirectional Gated Recurrent Unit network model together with the hybrid embedding that is used to learn the representation of the text level-by-level. Last but not least, extensive experiments were made over five large-scale real-world datasets in comparison with the state-of-the-art hierarchical and flat multi-label text classification approaches, and the experimental results show that our approach is very competitive to the state-of-the-art approaches in classification accuracy, in particular maintaining computational costs while achieving superior performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Menand完成签到,获得积分10
8秒前
8秒前
喜悦的鬼神完成签到 ,获得积分10
30秒前
33秒前
35秒前
39秒前
43秒前
赘婿应助研友_ZAyNjZ采纳,获得10
51秒前
1分钟前
风中的博发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
风中的博完成签到,获得积分10
1分钟前
逗小豆完成签到 ,获得积分10
1分钟前
紧张的海露完成签到,获得积分20
1分钟前
1分钟前
1分钟前
1分钟前
catherine发布了新的文献求助10
1分钟前
研友_ZAyNjZ发布了新的文献求助10
1分钟前
樱木花道发布了新的文献求助10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
嘉心糖应助寒冷的觅露采纳,获得30
2分钟前
2分钟前
光亮的听南完成签到 ,获得积分10
2分钟前
寒冷的觅露完成签到,获得积分20
2分钟前
李志全完成签到 ,获得积分10
2分钟前
君倾侧完成签到,获得积分10
2分钟前
Leofar完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
水杯不离手完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3311055
求助须知:如何正确求助?哪些是违规求助? 2943900
关于积分的说明 8516683
捐赠科研通 2619240
什么是DOI,文献DOI怎么找? 1432141
科研通“疑难数据库(出版商)”最低求助积分说明 664519
邀请新用户注册赠送积分活动 649810