Multi-level multi-modality (PET and CT) fusion radiomics: prognostic modeling for non-small cell lung carcinoma

特征(语言学) 医学 人工智能 单变量 比例危险模型 计算机科学 放射科 模式识别(心理学) 核医学 多元统计 内科学 机器学习 语言学 哲学
作者
Mehdi Amini,Mostafa Nazari,Isaac Shiri,Ghasem Hajianfar,Mohammad Reza Deevband,Hamid Abdollahi,Hossein Arabi,Arman Rahmim,Habib Zaidi
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:66 (20): 205017-205017 被引量:39
标识
DOI:10.1088/1361-6560/ac287d
摘要

We developed multi-modality radiomic models by integrating information extracted from18F-FDG PET and CT images using feature- and image-level fusions, toward improved prognosis for non-small cell lung carcinoma (NSCLC) patients. Two independent cohorts of NSCLC patients from two institutions (87 and 95 patients) were cycled as training and testing datasets. Fusion approaches were applied at two levels, namely feature- and image-levels. For feature-level fusion, radiomic features were extracted individually from CT and PET images and concatenated. Alternatively, radiomic features extracted separately from CT and PET images were averaged. For image-level fusion, wavelet fusion was utilized and tuned with two parameters, namely CT weight and Wavelet Band Pass Filtering Ratio. Clinical and combined clinical + radiomic models were developed. Gray level discretization was performed at 3 different levels (16, 32 and 64) and 225 radiomics features were extracted. Overall survival (OS) was considered as the endpoint. For feature reduction, correlated (redundant) features were excluded using Spearman's correlation, and best combination of top ten features with highest concordance-indices (via univariate Cox model) were selected in each model for further multivariate Cox model. Moreover, prognostic score's median, obtained from the training cohort, was used intact in the testing cohort as a threshold to classify patients into low- versus high-risk groups, and log-rank test was applied to assess differences between the Kaplan-Meier curves. Overall, while models based on feature-level fusion strategy showed limited superiority over single-modalities, image-level fusion strategy significantly outperformed both single-modality and feature-level fusion strategies. As such, the clinical model (C-index = 0.656) outperformed all models from single-modality and feature-level strategies, but was outperformed by certain models from image-level fusion strategy. Our findings indicated that image-level fusion multi-modality radiomics models outperformed single-modality, feature-level fusion, and clinical models for OS prediction of NSCLC patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
炸鸡腿完成签到,获得积分10
2秒前
沉默的大冰塊完成签到 ,获得积分10
3秒前
lsq108发布了新的文献求助10
4秒前
7秒前
爱静静应助袁思宇采纳,获得10
10秒前
哆啦完成签到,获得积分20
10秒前
11秒前
麋鹿发布了新的文献求助10
13秒前
14秒前
Hello应助风荏采纳,获得10
16秒前
SciGPT应助水煮蛋采纳,获得10
18秒前
斯文百招发布了新的文献求助10
21秒前
海心完成签到 ,获得积分10
25秒前
遥感小虫发布了新的文献求助20
34秒前
麋鹿完成签到,获得积分20
35秒前
35秒前
王永俊完成签到,获得积分10
36秒前
曾高高给曾高高的求助进行了留言
37秒前
黑咖喱完成签到,获得积分10
37秒前
无剑完成签到,获得积分10
38秒前
longjie完成签到,获得积分10
39秒前
栀子完成签到 ,获得积分10
40秒前
rrrick发布了新的文献求助10
41秒前
科目三应助sam采纳,获得10
43秒前
马騳骉完成签到,获得积分10
48秒前
51秒前
干净的烧鹅完成签到,获得积分10
51秒前
53秒前
53秒前
54秒前
sam发布了新的文献求助10
55秒前
jimskylxk发布了新的文献求助10
57秒前
bkagyin应助科研通管家采纳,获得10
57秒前
科研通AI2S应助科研通管家采纳,获得10
57秒前
大个应助科研通管家采纳,获得10
57秒前
Akim应助科研通管家采纳,获得10
57秒前
科研通AI2S应助科研通管家采纳,获得10
57秒前
情怀应助科研通管家采纳,获得10
57秒前
科研通AI2S应助科研通管家采纳,获得10
57秒前
58秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162987
求助须知:如何正确求助?哪些是违规求助? 2813990
关于积分的说明 7902734
捐赠科研通 2473613
什么是DOI,文献DOI怎么找? 1316952
科研通“疑难数据库(出版商)”最低求助积分说明 631560
版权声明 602187