Construction of a novel radiomics nomogram for the prediction of aggressive intrasegmental recurrence of HCC after radiofrequency ablation

列线图 医学 单变量 无线电技术 逻辑回归 磁共振成像 放射科 单变量分析 Lasso(编程语言) 射频消融术 多元分析 核医学 烧蚀 多元统计 肿瘤科 内科学 统计 万维网 计算机科学 数学
作者
Xiuling Lv,Minjiang Chen,Chunli Kong,Gaofeng Shu,Miaomiao Meng,Weichuan Ye,Shimiao Cheng,Liyun Zheng,Shiji Fang,Chunmiao Chen,Fazong Wu,Qiaoyou Weng,Jianfei Tu,Zhongwei Zhao,Jiansong Ji
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:144: 109955-109955 被引量:12
标识
DOI:10.1016/j.ejrad.2021.109955
摘要

To construct a precise prediction model of preoperative magnetic resonance imaging (MRI)-based nomogram for aggressive intrasegmental recurrence (AIR) of hepatocellular carcinoma (HCC) patients treated with radiofrequency ablation (RFA).Among 891 patients with HCC treated by RFA, 22 patients with AIR and 36 patients without AIR (non-AIR) were finally enrolled in our study, and each patient was followed up for more than 6 months to determine the occurrence of AIR. The laboratory indicators and MRI features were compared and assessed. Preoperative contrast-enhanced T1-weighted images (CE-T1WI) were used for radiomics analysis. The selected clinical indicators and texture features were finally screened out to generate the novel prediction nomogram.Tumor shape, ADC Value, DWI signal intensity and ΔSI were selected as the independent factors of AIR by univariate and multivariate logistic regression analysis. Meanwhile, two radiomics features were selected from 396 candidate features by LASSO (P < 0.05), which were further used to calculate the Rad-score. The selected clinical factors were further integrated with the Rad-score to construct the predictive model, and the AUCs were 0.941 (95% CI: 0.876-1.000) and 0.818 (95% CI: 0.576-1.000) in the training (15 AIR and 25 non-AIR) and validation cohorts (7 AIR and 11 non-AIR), respectively. The AIR predictive model was further converted into a novel radiomics nomogram, and decision curve analysis showed good agreement.The predictive nomogram integrated with clinical factors and CE-T1WI -based radiomics signature could accurately predict the occurrence of AIR after RFA, which could greatly help individualized evaluation before treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yyyyxxxg发布了新的文献求助10
1秒前
18135175733完成签到 ,获得积分20
1秒前
2秒前
saker发布了新的文献求助10
2秒前
2秒前
3秒前
斯文败类应助草木采纳,获得10
3秒前
科研通AI2S应助开朗的又菱采纳,获得30
3秒前
4秒前
4秒前
aaronzhu1995完成签到 ,获得积分10
5秒前
6秒前
熊星星完成签到 ,获得积分10
7秒前
嘻嘻发布了新的文献求助10
7秒前
Singularity应助孙兆杰采纳,获得10
7秒前
小蘑菇应助doctoryuyu采纳,获得10
7秒前
成成发布了新的文献求助10
7秒前
小学生发布了新的文献求助10
7秒前
深情安青应助lll采纳,获得10
8秒前
调研昵称发布了新的文献求助10
9秒前
黙宇循光发布了新的文献求助10
11秒前
112发布了新的文献求助10
12秒前
充电宝应助xx采纳,获得10
13秒前
葡萄成熟应助PWG采纳,获得10
14秒前
LeiX发布了新的文献求助10
15秒前
15秒前
15秒前
fy完成签到,获得积分10
15秒前
orixero应助成成采纳,获得10
15秒前
15秒前
16秒前
hushan53发布了新的文献求助10
16秒前
聪仔发布了新的文献求助10
17秒前
yyw发布了新的文献求助100
18秒前
科研通AI2S应助草木采纳,获得10
18秒前
18秒前
WXY发布了新的文献求助10
19秒前
lu完成签到,获得积分10
20秒前
whisper应助wang采纳,获得10
21秒前
李理发布了新的文献求助10
21秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141752
求助须知:如何正确求助?哪些是违规求助? 2792710
关于积分的说明 7803941
捐赠科研通 2448986
什么是DOI,文献DOI怎么找? 1303011
科研通“疑难数据库(出版商)”最低求助积分说明 626717
版权声明 601244