Construction of a novel radiomics nomogram for the prediction of aggressive intrasegmental recurrence of HCC after radiofrequency ablation

列线图 医学 单变量 无线电技术 逻辑回归 磁共振成像 放射科 单变量分析 Lasso(编程语言) 射频消融术 多元分析 核医学 烧蚀 多元统计 肿瘤科 内科学 统计 万维网 计算机科学 数学
作者
Xiuling Lv,Minjiang Chen,Chunli Kong,Gaofeng Shu,Miaomiao Meng,Weichuan Ye,Shimiao Cheng,Liyun Zheng,Shiji Fang,Chunmiao Chen,Fazong Wu,Qiaoyou Weng,Jianfei Tu,Zhongwei Zhao,Jiansong Ji
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:144: 109955-109955 被引量:13
标识
DOI:10.1016/j.ejrad.2021.109955
摘要

To construct a precise prediction model of preoperative magnetic resonance imaging (MRI)-based nomogram for aggressive intrasegmental recurrence (AIR) of hepatocellular carcinoma (HCC) patients treated with radiofrequency ablation (RFA).Among 891 patients with HCC treated by RFA, 22 patients with AIR and 36 patients without AIR (non-AIR) were finally enrolled in our study, and each patient was followed up for more than 6 months to determine the occurrence of AIR. The laboratory indicators and MRI features were compared and assessed. Preoperative contrast-enhanced T1-weighted images (CE-T1WI) were used for radiomics analysis. The selected clinical indicators and texture features were finally screened out to generate the novel prediction nomogram.Tumor shape, ADC Value, DWI signal intensity and ΔSI were selected as the independent factors of AIR by univariate and multivariate logistic regression analysis. Meanwhile, two radiomics features were selected from 396 candidate features by LASSO (P < 0.05), which were further used to calculate the Rad-score. The selected clinical factors were further integrated with the Rad-score to construct the predictive model, and the AUCs were 0.941 (95% CI: 0.876-1.000) and 0.818 (95% CI: 0.576-1.000) in the training (15 AIR and 25 non-AIR) and validation cohorts (7 AIR and 11 non-AIR), respectively. The AIR predictive model was further converted into a novel radiomics nomogram, and decision curve analysis showed good agreement.The predictive nomogram integrated with clinical factors and CE-T1WI -based radiomics signature could accurately predict the occurrence of AIR after RFA, which could greatly help individualized evaluation before treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李解万岁完成签到,获得积分10
刚刚
zjt1111111发布了新的文献求助10
1秒前
平淡南霜完成签到,获得积分10
1秒前
五一完成签到,获得积分10
1秒前
科研工作者完成签到,获得积分10
2秒前
爱岗敬业牛马人完成签到,获得积分10
2秒前
2秒前
YiWei发布了新的文献求助10
2秒前
molotov发布了新的文献求助10
3秒前
3秒前
3秒前
zzzzzz完成签到,获得积分10
4秒前
归尘完成签到,获得积分10
4秒前
打打应助小红采纳,获得10
4秒前
4秒前
共渡完成签到,获得积分10
4秒前
修杰应助科研通管家采纳,获得10
5秒前
修杰应助科研通管家采纳,获得10
5秒前
修杰应助科研通管家采纳,获得10
5秒前
完美世界应助科研通管家采纳,获得10
5秒前
我是老大应助科研通管家采纳,获得10
5秒前
kkkklo完成签到,获得积分10
5秒前
Hello应助科研通管家采纳,获得30
5秒前
5秒前
5秒前
Jasper应助科研通管家采纳,获得10
5秒前
桐桐应助科研通管家采纳,获得10
5秒前
5秒前
DijiaXu应助科研通管家采纳,获得10
6秒前
酷波er应助科研通管家采纳,获得10
6秒前
Lucas应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
小二郎应助科研通管家采纳,获得10
6秒前
6秒前
wanci应助gg采纳,获得10
7秒前
xhl发布了新的文献求助30
8秒前
Jenny_Zhan完成签到,获得积分10
8秒前
灵巧的月光完成签到 ,获得积分10
8秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016068
求助须知:如何正确求助?哪些是违规求助? 3556043
关于积分的说明 11319836
捐赠科研通 3289063
什么是DOI,文献DOI怎么找? 1812373
邀请新用户注册赠送积分活动 887923
科研通“疑难数据库(出版商)”最低求助积分说明 812044