Construction of a novel radiomics nomogram for the prediction of aggressive intrasegmental recurrence of HCC after radiofrequency ablation

列线图 医学 单变量 无线电技术 逻辑回归 磁共振成像 放射科 单变量分析 Lasso(编程语言) 射频消融术 多元分析 核医学 烧蚀 多元统计 肿瘤科 内科学 统计 万维网 计算机科学 数学
作者
Xiuling Lv,Minjiang Chen,Chunli Kong,Gaofeng Shu,Miaomiao Meng,Weichuan Ye,Shimiao Cheng,Liyun Zheng,Shiji Fang,Chunmiao Chen,Fazong Wu,Qiaoyou Weng,Jianfei Tu,Zhongwei Zhao,Jiansong Ji
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:144: 109955-109955 被引量:13
标识
DOI:10.1016/j.ejrad.2021.109955
摘要

To construct a precise prediction model of preoperative magnetic resonance imaging (MRI)-based nomogram for aggressive intrasegmental recurrence (AIR) of hepatocellular carcinoma (HCC) patients treated with radiofrequency ablation (RFA).Among 891 patients with HCC treated by RFA, 22 patients with AIR and 36 patients without AIR (non-AIR) were finally enrolled in our study, and each patient was followed up for more than 6 months to determine the occurrence of AIR. The laboratory indicators and MRI features were compared and assessed. Preoperative contrast-enhanced T1-weighted images (CE-T1WI) were used for radiomics analysis. The selected clinical indicators and texture features were finally screened out to generate the novel prediction nomogram.Tumor shape, ADC Value, DWI signal intensity and ΔSI were selected as the independent factors of AIR by univariate and multivariate logistic regression analysis. Meanwhile, two radiomics features were selected from 396 candidate features by LASSO (P < 0.05), which were further used to calculate the Rad-score. The selected clinical factors were further integrated with the Rad-score to construct the predictive model, and the AUCs were 0.941 (95% CI: 0.876-1.000) and 0.818 (95% CI: 0.576-1.000) in the training (15 AIR and 25 non-AIR) and validation cohorts (7 AIR and 11 non-AIR), respectively. The AIR predictive model was further converted into a novel radiomics nomogram, and decision curve analysis showed good agreement.The predictive nomogram integrated with clinical factors and CE-T1WI -based radiomics signature could accurately predict the occurrence of AIR after RFA, which could greatly help individualized evaluation before treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笨笨的外套完成签到,获得积分10
刚刚
缓慢的王完成签到,获得积分10
1秒前
周一一完成签到,获得积分10
1秒前
Libra完成签到,获得积分10
1秒前
1秒前
一一完成签到,获得积分10
1秒前
2秒前
执着黑米完成签到 ,获得积分10
2秒前
2秒前
浪费完成签到 ,获得积分10
2秒前
3秒前
嘎嘎完成签到,获得积分20
3秒前
Jackson_Cai完成签到,获得积分10
3秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
天天下文献完成签到 ,获得积分10
5秒前
5秒前
5秒前
温暖书雪完成签到,获得积分10
5秒前
FunnyL发布了新的文献求助10
5秒前
嘟嘟发布了新的文献求助10
6秒前
orixero应助晕倒一下采纳,获得10
6秒前
英俊水池完成签到,获得积分10
6秒前
溪水完成签到 ,获得积分10
6秒前
飞蚁完成签到,获得积分10
6秒前
YY完成签到,获得积分10
6秒前
7秒前
8秒前
chengli完成签到,获得积分10
8秒前
岁岁完成签到 ,获得积分10
8秒前
tangyong完成签到,获得积分10
9秒前
Japrin完成签到,获得积分10
9秒前
星辰大海完成签到,获得积分10
10秒前
charon完成签到 ,获得积分10
10秒前
大魁完成签到,获得积分10
10秒前
心悦SCI完成签到,获得积分10
10秒前
白日幻想家完成签到 ,获得积分10
10秒前
stephanine完成签到 ,获得积分10
11秒前
fan051500完成签到,获得积分10
11秒前
Queena完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482803
求助须知:如何正确求助?哪些是违规求助? 4583511
关于积分的说明 14390213
捐赠科研通 4512809
什么是DOI,文献DOI怎么找? 2473255
邀请新用户注册赠送积分活动 1459255
关于科研通互助平台的介绍 1432883