Machine learning for optimised and clean Li-ion battery manufacturing: Revealing the dependency between electrode and cell characteristics

涂层 稳健性(进化) 工艺工程 电极 电池(电) 计算机科学 材料科学 工程类 纳米技术 生物化学 量子力学 基因 物理 物理化学 功率(物理) 化学
作者
Mona Faraji Niri,Kailong Liu,Geanina Apachitei,Luis A. Román‐Ramírez,Michael Lain,Widanalage Dhammika Widanage,James Marco
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:324: 129272-129272 被引量:45
标识
DOI:10.1016/j.jclepro.2021.129272
摘要

Abstract The large number of parameters involved in each step of Li-ion electrode manufacturing process as well as the complex electrochemical interactions in those affect the properties of the final product. Optimization of the manufacturing process, although very challenging, is critical for reducing the production time, cost, and carbon footprint. Data-driven models offer a solution for manufacturing optimization problems and underpin future aspirations for manufacturing volumes. This study combines machine-learning approaches with the experimental data to build data-driven models for predicting final battery performance. The models capture the interdependencies between the key parameters of electrode manufacturing, its structural features, and the electrical performance characteristics of the associated Li-ion cells. The methodology here is based on a set of designed experiments conducted in a controlled environment, altering electrode coating control parameters of comma bar gap, line speed and coating ratio, obtaining the electrode structural properties of active material mass loading, thickness, and porosity, extracting the manufactured half-cell characteristics at various cycling conditions, and finally building models for interconnectivity studies and predictions. Investigating and quantifying performance predictability through a systems' view of the manufacturing process is the main novelty of this paper. Comparisons between different machine-learning models, analysis of models’ performance with a limited number of inputs, analysis of robustness to measurement noise and data-size are other contributions of this study. The results suggest that, given manufacturing parameters, the coated electrode properties and cell characteristics can be predicted with about 5% and 3% errors respectively. The presented concepts are believed to link the manufacturing at lab-scale to the pilot-line scale and support smart, optimised, and clean production of electrodes for high-quality Li-ion batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_knggYn完成签到,获得积分0
刚刚
学术芽完成签到,获得积分10
1秒前
1秒前
科研通AI6应助xwl采纳,获得10
2秒前
tmuguoli发布了新的文献求助10
3秒前
4秒前
4秒前
lilin完成签到,获得积分10
4秒前
hahaha完成签到,获得积分10
5秒前
搭碰完成签到,获得积分0
6秒前
egg发布了新的文献求助10
6秒前
PhD发布了新的文献求助10
7秒前
香蕉觅云应助xxxx采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
LiangxuanPan完成签到,获得积分10
8秒前
科研通AI6应助FengGo采纳,获得10
8秒前
8秒前
Du完成签到 ,获得积分10
10秒前
10秒前
10秒前
gao456789发布了新的文献求助10
11秒前
11秒前
王博完成签到,获得积分10
11秒前
迟迟完成签到 ,获得积分10
13秒前
egg完成签到,获得积分10
13秒前
泥落完成签到 ,获得积分10
13秒前
14秒前
路易斯发布了新的文献求助10
15秒前
15秒前
和谐的长颈鹿关注了科研通微信公众号
16秒前
16秒前
17秒前
18秒前
哦是不是啊完成签到,获得积分10
18秒前
18秒前
19秒前
xwl发布了新的文献求助10
19秒前
19秒前
科研通AI2S应助花南星采纳,获得10
19秒前
myco完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4575607
求助须知:如何正确求助?哪些是违规求助? 3995066
关于积分的说明 12367556
捐赠科研通 3668746
什么是DOI,文献DOI怎么找? 2021988
邀请新用户注册赠送积分活动 1056005
科研通“疑难数据库(出版商)”最低求助积分说明 943343