Machine learning for optimised and clean Li-ion battery manufacturing: Revealing the dependency between electrode and cell characteristics

涂层 稳健性(进化) 工艺工程 电极 电池(电) 计算机科学 材料科学 工程类 纳米技术 生物化学 量子力学 基因 物理 物理化学 功率(物理) 化学
作者
Mona Faraji Niri,Kailong Liu,Geanina Apachitei,Luis A. Román‐Ramírez,Michael Lain,Widanalage Dhammika Widanage,James Marco
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:324: 129272-129272 被引量:45
标识
DOI:10.1016/j.jclepro.2021.129272
摘要

Abstract The large number of parameters involved in each step of Li-ion electrode manufacturing process as well as the complex electrochemical interactions in those affect the properties of the final product. Optimization of the manufacturing process, although very challenging, is critical for reducing the production time, cost, and carbon footprint. Data-driven models offer a solution for manufacturing optimization problems and underpin future aspirations for manufacturing volumes. This study combines machine-learning approaches with the experimental data to build data-driven models for predicting final battery performance. The models capture the interdependencies between the key parameters of electrode manufacturing, its structural features, and the electrical performance characteristics of the associated Li-ion cells. The methodology here is based on a set of designed experiments conducted in a controlled environment, altering electrode coating control parameters of comma bar gap, line speed and coating ratio, obtaining the electrode structural properties of active material mass loading, thickness, and porosity, extracting the manufactured half-cell characteristics at various cycling conditions, and finally building models for interconnectivity studies and predictions. Investigating and quantifying performance predictability through a systems' view of the manufacturing process is the main novelty of this paper. Comparisons between different machine-learning models, analysis of models’ performance with a limited number of inputs, analysis of robustness to measurement noise and data-size are other contributions of this study. The results suggest that, given manufacturing parameters, the coated electrode properties and cell characteristics can be predicted with about 5% and 3% errors respectively. The presented concepts are believed to link the manufacturing at lab-scale to the pilot-line scale and support smart, optimised, and clean production of electrodes for high-quality Li-ion batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
Krapanda发布了新的文献求助10
1秒前
yar应助丹丹采纳,获得10
1秒前
一二发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
tunacan完成签到 ,获得积分10
2秒前
机灵晓绿完成签到 ,获得积分10
2秒前
葫芦娃大铁锤完成签到 ,获得积分10
3秒前
无限的水壶完成签到 ,获得积分10
3秒前
李逸玄发布了新的文献求助20
4秒前
aaaao发布了新的文献求助10
4秒前
寻道图强应助Runtu1121采纳,获得30
4秒前
希望天下0贩的0应助小七采纳,获得10
5秒前
Xuan完成签到,获得积分10
5秒前
6秒前
6秒前
rachel发布了新的文献求助10
6秒前
7秒前
星宿发布了新的文献求助10
7秒前
7秒前
123发布了新的文献求助10
7秒前
7秒前
7秒前
kano发布了新的文献求助10
8秒前
Jasper应助搞怪若冰采纳,获得10
8秒前
8秒前
10秒前
John发布了新的文献求助10
10秒前
可爱佳完成签到,获得积分10
10秒前
收醉人应助orange9采纳,获得10
10秒前
10秒前
orixero应助幸福果汁采纳,获得10
10秒前
11秒前
329完成签到,获得积分10
11秒前
Xuan发布了新的文献求助10
11秒前
Ronnie发布了新的文献求助10
11秒前
一二完成签到,获得积分10
11秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 900
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
錢鍾書楊絳親友書札 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3295008
求助须知:如何正确求助?哪些是违规求助? 2931071
关于积分的说明 8450028
捐赠科研通 2603594
什么是DOI,文献DOI怎么找? 1421182
科研通“疑难数据库(出版商)”最低求助积分说明 660829
邀请新用户注册赠送积分活动 643668