Machine learning for optimised and clean Li-ion battery manufacturing: Revealing the dependency between electrode and cell characteristics

涂层 稳健性(进化) 工艺工程 电极 电池(电) 计算机科学 材料科学 工程类 纳米技术 生物化学 量子力学 基因 物理 物理化学 功率(物理) 化学
作者
Mona Faraji Niri,Kailong Liu,Geanina Apachitei,Luis A. Román‐Ramírez,Michael Lain,Widanalage Dhammika Widanage,James Marco
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:324: 129272-129272 被引量:45
标识
DOI:10.1016/j.jclepro.2021.129272
摘要

Abstract The large number of parameters involved in each step of Li-ion electrode manufacturing process as well as the complex electrochemical interactions in those affect the properties of the final product. Optimization of the manufacturing process, although very challenging, is critical for reducing the production time, cost, and carbon footprint. Data-driven models offer a solution for manufacturing optimization problems and underpin future aspirations for manufacturing volumes. This study combines machine-learning approaches with the experimental data to build data-driven models for predicting final battery performance. The models capture the interdependencies between the key parameters of electrode manufacturing, its structural features, and the electrical performance characteristics of the associated Li-ion cells. The methodology here is based on a set of designed experiments conducted in a controlled environment, altering electrode coating control parameters of comma bar gap, line speed and coating ratio, obtaining the electrode structural properties of active material mass loading, thickness, and porosity, extracting the manufactured half-cell characteristics at various cycling conditions, and finally building models for interconnectivity studies and predictions. Investigating and quantifying performance predictability through a systems' view of the manufacturing process is the main novelty of this paper. Comparisons between different machine-learning models, analysis of models’ performance with a limited number of inputs, analysis of robustness to measurement noise and data-size are other contributions of this study. The results suggest that, given manufacturing parameters, the coated electrode properties and cell characteristics can be predicted with about 5% and 3% errors respectively. The presented concepts are believed to link the manufacturing at lab-scale to the pilot-line scale and support smart, optimised, and clean production of electrodes for high-quality Li-ion batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
噗噗完成签到,获得积分10
1秒前
ddn完成签到,获得积分10
4秒前
5秒前
研友_n0kjPL完成签到,获得积分0
8秒前
allia完成签到 ,获得积分10
11秒前
山猪吃细糠完成签到 ,获得积分10
13秒前
qiqiqiqiqi完成签到 ,获得积分10
14秒前
似风完成签到 ,获得积分10
14秒前
rsdggsrser完成签到 ,获得积分10
15秒前
李子不是杏完成签到 ,获得积分10
15秒前
漏脑之鱼完成签到 ,获得积分10
15秒前
科研通AI6应助Roy采纳,获得10
16秒前
万泉部诗人完成签到,获得积分10
19秒前
科研通AI2S应助十八鱼采纳,获得10
20秒前
20秒前
青山完成签到,获得积分10
22秒前
sunnyqqz完成签到,获得积分10
24秒前
ABC发布了新的文献求助30
27秒前
小粒橙完成签到 ,获得积分10
27秒前
小二郎应助qrt采纳,获得10
29秒前
一天完成签到 ,获得积分10
30秒前
十月完成签到 ,获得积分10
34秒前
36秒前
38秒前
李健应助XU徐采纳,获得10
40秒前
qrt发布了新的文献求助10
41秒前
雨水完成签到,获得积分10
41秒前
哇哈完成签到 ,获得积分10
43秒前
迅速的幻雪完成签到 ,获得积分10
45秒前
小宋完成签到 ,获得积分10
45秒前
酷波er应助勇往直前采纳,获得10
45秒前
50秒前
tmobiusx发布了新的文献求助10
51秒前
51秒前
半岛完成签到,获得积分10
54秒前
HONGZHOU完成签到,获得积分10
54秒前
56秒前
勇往直前发布了新的文献求助10
56秒前
十八鱼完成签到,获得积分10
57秒前
我就是我完成签到,获得积分10
57秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5378385
求助须知:如何正确求助?哪些是违规求助? 4502816
关于积分的说明 14014575
捐赠科研通 4411403
什么是DOI,文献DOI怎么找? 2423255
邀请新用户注册赠送积分活动 1416172
关于科研通互助平台的介绍 1393591