重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Machine learning for optimised and clean Li-ion battery manufacturing: Revealing the dependency between electrode and cell characteristics

涂层 稳健性(进化) 工艺工程 电极 电池(电) 计算机科学 材料科学 工程类 纳米技术 生物化学 量子力学 基因 物理 物理化学 功率(物理) 化学
作者
Mona Faraji Niri,Kailong Liu,Geanina Apachitei,Luis A. Román‐Ramírez,Michael Lain,Widanalage Dhammika Widanage,James Marco
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:324: 129272-129272 被引量:45
标识
DOI:10.1016/j.jclepro.2021.129272
摘要

Abstract The large number of parameters involved in each step of Li-ion electrode manufacturing process as well as the complex electrochemical interactions in those affect the properties of the final product. Optimization of the manufacturing process, although very challenging, is critical for reducing the production time, cost, and carbon footprint. Data-driven models offer a solution for manufacturing optimization problems and underpin future aspirations for manufacturing volumes. This study combines machine-learning approaches with the experimental data to build data-driven models for predicting final battery performance. The models capture the interdependencies between the key parameters of electrode manufacturing, its structural features, and the electrical performance characteristics of the associated Li-ion cells. The methodology here is based on a set of designed experiments conducted in a controlled environment, altering electrode coating control parameters of comma bar gap, line speed and coating ratio, obtaining the electrode structural properties of active material mass loading, thickness, and porosity, extracting the manufactured half-cell characteristics at various cycling conditions, and finally building models for interconnectivity studies and predictions. Investigating and quantifying performance predictability through a systems' view of the manufacturing process is the main novelty of this paper. Comparisons between different machine-learning models, analysis of models’ performance with a limited number of inputs, analysis of robustness to measurement noise and data-size are other contributions of this study. The results suggest that, given manufacturing parameters, the coated electrode properties and cell characteristics can be predicted with about 5% and 3% errors respectively. The presented concepts are believed to link the manufacturing at lab-scale to the pilot-line scale and support smart, optimised, and clean production of electrodes for high-quality Li-ion batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
FashionBoy应助跳跃安波采纳,获得10
刚刚
1秒前
1秒前
2秒前
小耿木木完成签到,获得积分10
2秒前
然而。发布了新的文献求助10
3秒前
义气钻石发布了新的文献求助10
3秒前
3秒前
吴煜民发布了新的文献求助10
3秒前
nuo完成签到,获得积分20
4秒前
4秒前
阿西吧完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
5秒前
5秒前
Picachu完成签到 ,获得积分10
5秒前
123noo发布了新的文献求助10
5秒前
宥兹发布了新的文献求助10
5秒前
FeCl完成签到,获得积分10
5秒前
5秒前
nixiaozhi发布了新的文献求助10
7秒前
7秒前
nuo发布了新的文献求助20
7秒前
打打应助行7采纳,获得10
8秒前
Yan完成签到,获得积分10
8秒前
小二郎应助ding采纳,获得10
8秒前
上山打老虎完成签到,获得积分10
8秒前
9秒前
郭通发布了新的文献求助30
9秒前
星辰大海应助然而。采纳,获得10
10秒前
领导范儿应助黄任行采纳,获得10
10秒前
10秒前
10秒前
sj关闭了sj文献求助
10秒前
11秒前
大模型应助初遇之时最暖采纳,获得10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467386
求助须知:如何正确求助?哪些是违规求助? 4571127
关于积分的说明 14328830
捐赠科研通 4497699
什么是DOI,文献DOI怎么找? 2464057
邀请新用户注册赠送积分活动 1452910
关于科研通互助平台的介绍 1427654