Machine learning for optimised and clean Li-ion battery manufacturing: Revealing the dependency between electrode and cell characteristics

涂层 稳健性(进化) 工艺工程 电极 电池(电) 计算机科学 材料科学 工程类 纳米技术 生物化学 量子力学 基因 物理 物理化学 功率(物理) 化学
作者
Mona Faraji Niri,Kailong Liu,Geanina Apachitei,Luis A. Román‐Ramírez,Michael Lain,Widanalage Dhammika Widanage,James Marco
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:324: 129272-129272 被引量:45
标识
DOI:10.1016/j.jclepro.2021.129272
摘要

Abstract The large number of parameters involved in each step of Li-ion electrode manufacturing process as well as the complex electrochemical interactions in those affect the properties of the final product. Optimization of the manufacturing process, although very challenging, is critical for reducing the production time, cost, and carbon footprint. Data-driven models offer a solution for manufacturing optimization problems and underpin future aspirations for manufacturing volumes. This study combines machine-learning approaches with the experimental data to build data-driven models for predicting final battery performance. The models capture the interdependencies between the key parameters of electrode manufacturing, its structural features, and the electrical performance characteristics of the associated Li-ion cells. The methodology here is based on a set of designed experiments conducted in a controlled environment, altering electrode coating control parameters of comma bar gap, line speed and coating ratio, obtaining the electrode structural properties of active material mass loading, thickness, and porosity, extracting the manufactured half-cell characteristics at various cycling conditions, and finally building models for interconnectivity studies and predictions. Investigating and quantifying performance predictability through a systems' view of the manufacturing process is the main novelty of this paper. Comparisons between different machine-learning models, analysis of models’ performance with a limited number of inputs, analysis of robustness to measurement noise and data-size are other contributions of this study. The results suggest that, given manufacturing parameters, the coated electrode properties and cell characteristics can be predicted with about 5% and 3% errors respectively. The presented concepts are believed to link the manufacturing at lab-scale to the pilot-line scale and support smart, optimised, and clean production of electrodes for high-quality Li-ion batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1Yer6完成签到 ,获得积分10
刚刚
1秒前
震速流完成签到 ,获得积分10
1秒前
2秒前
hilm应助Iridesent0v0采纳,获得10
4秒前
5秒前
丘丘发布了新的文献求助10
5秒前
丫丫发布了新的文献求助10
6秒前
6秒前
9秒前
FashionBoy应助清新采纳,获得10
9秒前
9秒前
10秒前
zzcres完成签到,获得积分10
11秒前
12秒前
不配.应助柚子茶采纳,获得150
12秒前
13秒前
pp完成签到,获得积分10
13秒前
耳喃发布了新的文献求助10
14秒前
所所应助风信子采纳,获得10
14秒前
天真的初蓝完成签到,获得积分10
14秒前
15秒前
15秒前
16秒前
16秒前
徐萌完成签到 ,获得积分10
17秒前
shiyi完成签到,获得积分10
18秒前
善学以致用应助天真大神采纳,获得10
18秒前
Ava应助灵巧鹤采纳,获得10
19秒前
21秒前
清新发布了新的文献求助10
21秒前
直率飞柏发布了新的文献求助10
22秒前
肚子好e啊完成签到 ,获得积分10
22秒前
Kent完成签到 ,获得积分10
23秒前
25秒前
xxfsx应助凯凯采纳,获得10
26秒前
苏苏发布了新的文献求助10
26秒前
27秒前
浮游应助大大小采纳,获得10
29秒前
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458536
求助须知:如何正确求助?哪些是违规求助? 4564580
关于积分的说明 14295673
捐赠科研通 4489566
什么是DOI,文献DOI怎么找? 2459081
邀请新用户注册赠送积分活动 1448892
关于科研通互助平台的介绍 1424474