Machine learning for optimised and clean Li-ion battery manufacturing: Revealing the dependency between electrode and cell characteristics

涂层 稳健性(进化) 工艺工程 电极 电池(电) 计算机科学 材料科学 工程类 纳米技术 生物化学 量子力学 基因 物理 物理化学 功率(物理) 化学
作者
Mona Faraji Niri,Kailong Liu,Geanina Apachitei,Luis A. Román‐Ramírez,Michael Lain,Widanalage Dhammika Widanage,James Marco
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:324: 129272-129272 被引量:45
标识
DOI:10.1016/j.jclepro.2021.129272
摘要

Abstract The large number of parameters involved in each step of Li-ion electrode manufacturing process as well as the complex electrochemical interactions in those affect the properties of the final product. Optimization of the manufacturing process, although very challenging, is critical for reducing the production time, cost, and carbon footprint. Data-driven models offer a solution for manufacturing optimization problems and underpin future aspirations for manufacturing volumes. This study combines machine-learning approaches with the experimental data to build data-driven models for predicting final battery performance. The models capture the interdependencies between the key parameters of electrode manufacturing, its structural features, and the electrical performance characteristics of the associated Li-ion cells. The methodology here is based on a set of designed experiments conducted in a controlled environment, altering electrode coating control parameters of comma bar gap, line speed and coating ratio, obtaining the electrode structural properties of active material mass loading, thickness, and porosity, extracting the manufactured half-cell characteristics at various cycling conditions, and finally building models for interconnectivity studies and predictions. Investigating and quantifying performance predictability through a systems' view of the manufacturing process is the main novelty of this paper. Comparisons between different machine-learning models, analysis of models’ performance with a limited number of inputs, analysis of robustness to measurement noise and data-size are other contributions of this study. The results suggest that, given manufacturing parameters, the coated electrode properties and cell characteristics can be predicted with about 5% and 3% errors respectively. The presented concepts are believed to link the manufacturing at lab-scale to the pilot-line scale and support smart, optimised, and clean production of electrodes for high-quality Li-ion batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
缓慢的蜗牛完成签到,获得积分10
刚刚
李雨完成签到,获得积分10
刚刚
华仔应助背后的世开采纳,获得10
1秒前
烟花应助蓝鲸鲸采纳,获得10
1秒前
wenbin发布了新的文献求助10
1秒前
大模型应助Dr彭0923采纳,获得10
1秒前
Eton完成签到,获得积分10
1秒前
难过忆山发布了新的文献求助10
1秒前
feiying88发布了新的文献求助10
2秒前
yeye完成签到,获得积分10
2秒前
等待毛豆完成签到,获得积分10
2秒前
勤奋曼雁完成签到,获得积分10
2秒前
Melody完成签到,获得积分10
3秒前
搞怪梦寒发布了新的文献求助10
3秒前
啊啊啊完成签到,获得积分10
4秒前
4秒前
Owen应助屎味烤地瓜采纳,获得10
5秒前
wangerer完成签到,获得积分10
6秒前
6秒前
MrX完成签到,获得积分10
7秒前
小木木给小木木的求助进行了留言
7秒前
沉睡的棉花糖完成签到,获得积分10
7秒前
linxm7完成签到,获得积分10
7秒前
Hello应助沉静的曼荷采纳,获得10
7秒前
自然的靖荷完成签到,获得积分10
7秒前
迷路的小蚂蚁完成签到,获得积分10
8秒前
钎城完成签到,获得积分20
8秒前
汉堡包应助风中道罡采纳,获得10
8秒前
Owen应助欧阳铭采纳,获得10
9秒前
9秒前
9秒前
9秒前
labxgr发布了新的文献求助10
9秒前
和谐的万宝路完成签到,获得积分10
9秒前
战战完成签到,获得积分10
10秒前
李雪完成签到,获得积分10
10秒前
10秒前
FashionBoy应助Sarah悦采纳,获得10
10秒前
11秒前
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957243
求助须知:如何正确求助?哪些是违规求助? 3503275
关于积分的说明 11112387
捐赠科研通 3234383
什么是DOI,文献DOI怎么找? 1787895
邀请新用户注册赠送积分活动 870830
科研通“疑难数据库(出版商)”最低求助积分说明 802330