Machine learning for optimised and clean Li-ion battery manufacturing: Revealing the dependency between electrode and cell characteristics

涂层 稳健性(进化) 工艺工程 电极 电池(电) 计算机科学 材料科学 工程类 纳米技术 生物化学 量子力学 基因 物理 物理化学 功率(物理) 化学
作者
Mona Faraji Niri,Kailong Liu,Geanina Apachitei,Luis A. Román‐Ramírez,Michael Lain,Widanalage Dhammika Widanage,James Marco
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:324: 129272-129272 被引量:45
标识
DOI:10.1016/j.jclepro.2021.129272
摘要

Abstract The large number of parameters involved in each step of Li-ion electrode manufacturing process as well as the complex electrochemical interactions in those affect the properties of the final product. Optimization of the manufacturing process, although very challenging, is critical for reducing the production time, cost, and carbon footprint. Data-driven models offer a solution for manufacturing optimization problems and underpin future aspirations for manufacturing volumes. This study combines machine-learning approaches with the experimental data to build data-driven models for predicting final battery performance. The models capture the interdependencies between the key parameters of electrode manufacturing, its structural features, and the electrical performance characteristics of the associated Li-ion cells. The methodology here is based on a set of designed experiments conducted in a controlled environment, altering electrode coating control parameters of comma bar gap, line speed and coating ratio, obtaining the electrode structural properties of active material mass loading, thickness, and porosity, extracting the manufactured half-cell characteristics at various cycling conditions, and finally building models for interconnectivity studies and predictions. Investigating and quantifying performance predictability through a systems' view of the manufacturing process is the main novelty of this paper. Comparisons between different machine-learning models, analysis of models’ performance with a limited number of inputs, analysis of robustness to measurement noise and data-size are other contributions of this study. The results suggest that, given manufacturing parameters, the coated electrode properties and cell characteristics can be predicted with about 5% and 3% errors respectively. The presented concepts are believed to link the manufacturing at lab-scale to the pilot-line scale and support smart, optimised, and clean production of electrodes for high-quality Li-ion batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
香蕉觅云应助Lee采纳,获得10
3秒前
充电宝应助研友_8Kedgn采纳,获得10
4秒前
研研发布了新的文献求助10
4秒前
汉堡包应助blueskyzhi采纳,获得10
4秒前
皮蛋完成签到,获得积分10
6秒前
6秒前
鱼贝贝完成签到 ,获得积分10
8秒前
懒洋洋完成签到 ,获得积分10
10秒前
yaxuandeng完成签到,获得积分10
11秒前
11秒前
浮游应助wocao采纳,获得10
12秒前
Lee发布了新的文献求助10
14秒前
15秒前
deeperection发布了新的文献求助10
17秒前
19秒前
丘比特应助ahfjk采纳,获得10
20秒前
youxiu完成签到 ,获得积分10
20秒前
21秒前
dolabmu完成签到 ,获得积分10
22秒前
22秒前
23秒前
jiaxiangxia完成签到 ,获得积分10
24秒前
wang发布了新的文献求助10
24秒前
25秒前
HuSP完成签到,获得积分10
27秒前
菜菜博士发布了新的文献求助10
28秒前
xiaoqi完成签到,获得积分10
28秒前
一包辣条完成签到,获得积分10
28秒前
Rong完成签到 ,获得积分10
28秒前
研友_8Kedgn发布了新的文献求助10
30秒前
应飞飞完成签到,获得积分10
30秒前
甜甜圈完成签到 ,获得积分10
30秒前
厚德载物完成签到,获得积分10
30秒前
LLL完成签到,获得积分10
30秒前
31秒前
32秒前
菜菜博士完成签到,获得积分10
33秒前
浮游应助wocao采纳,获得10
34秒前
南风完成签到,获得积分10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Methoden des Rechts 600
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5284152
求助须知:如何正确求助?哪些是违规求助? 4437733
关于积分的说明 13814786
捐赠科研通 4318688
什么是DOI,文献DOI怎么找? 2370566
邀请新用户注册赠送积分活动 1365978
关于科研通互助平台的介绍 1329429