Combining physics and deep learning to learn continuous-time dynamics models

深度学习 人工智能 计算机科学 逆动力学 黑匣子 人工神经网络 机器人学 机器学习 运动学 物理 机器人 经典力学
作者
Michael Lutter,Jan Peters
出处
期刊:The International Journal of Robotics Research [SAGE]
卷期号:42 (3): 83-107 被引量:10
标识
DOI:10.1177/02783649231169492
摘要

Deep learning has been widely used within learning algorithms for robotics. One disadvantage of deep networks is that these networks are black-box representations. Therefore, the learned approximations ignore the existing knowledge of physics or robotics. Especially for learning dynamics models, these black-box models are not desirable as the underlying principles are well understood and the standard deep networks can learn dynamics that violate these principles. To learn dynamics models with deep networks that guarantee physically plausible dynamics, we introduce physics-inspired deep networks that combine first principles from physics with deep learning. We incorporate Lagrangian mechanics within the model learning such that all approximated models adhere to the laws of physics and conserve energy. Deep Lagrangian Networks (DeLaN) parametrize the system energy using two networks. The parameters are obtained by minimizing the squared residual of the Euler–Lagrange differential equation. Therefore, the resulting model does not require specific knowledge of the individual system, is interpretable, and can be used as a forward, inverse, and energy model. Previously these properties were only obtained when using system identification techniques that require knowledge of the kinematic structure. We apply DeLaN to learning dynamics models and apply these models to control simulated and physical rigid body systems. The results show that the proposed approach obtains dynamics models that can be applied to physical systems for real-time control. Compared to standard deep networks, the physics-inspired models learn better models and capture the underlying structure of the dynamics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
CipherSage应助陈凌采纳,获得30
5秒前
ccm应助SONG采纳,获得10
7秒前
邹随阴发布了新的文献求助30
7秒前
Xin应助chjy采纳,获得100
7秒前
nannan完成签到,获得积分10
8秒前
8秒前
8秒前
hkxfg完成签到,获得积分10
9秒前
郑恩熙发布了新的文献求助10
10秒前
wubinbin完成签到 ,获得积分10
10秒前
路冰完成签到,获得积分10
12秒前
fff发布了新的文献求助10
13秒前
9999完成签到,获得积分10
14秒前
灵巧迎夏完成签到,获得积分10
15秒前
15秒前
16秒前
糟糕的霆发布了新的文献求助10
16秒前
17秒前
18秒前
20秒前
华仔应助fff采纳,获得10
21秒前
biubiufan完成签到,获得积分10
22秒前
Akim应助拾捌采纳,获得10
22秒前
feitachi发布了新的文献求助30
22秒前
25秒前
sudongdong发布了新的文献求助10
25秒前
25秒前
请加我XP完成签到,获得积分10
25秒前
26秒前
钱财实景发布了新的文献求助10
26秒前
chjy完成签到,获得积分10
27秒前
莉莉安完成签到 ,获得积分10
27秒前
28秒前
30秒前
852应助十里八乡俊俏后生采纳,获得10
30秒前
31秒前
钱财实景完成签到,获得积分10
32秒前
32秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161699
求助须知:如何正确求助?哪些是违规求助? 2812944
关于积分的说明 7897948
捐赠科研通 2471893
什么是DOI,文献DOI怎么找? 1316222
科研通“疑难数据库(出版商)”最低求助积分说明 631263
版权声明 602129