Combining physics and deep learning to learn continuous-time dynamics models

深度学习 人工智能 计算机科学 逆动力学 黑匣子 人工神经网络 机器人学 机器学习 运动学 物理 机器人 经典力学
作者
Michael Lutter,Jan Peters
出处
期刊:The International Journal of Robotics Research [SAGE Publishing]
卷期号:42 (3): 83-107 被引量:19
标识
DOI:10.1177/02783649231169492
摘要

Deep learning has been widely used within learning algorithms for robotics. One disadvantage of deep networks is that these networks are black-box representations. Therefore, the learned approximations ignore the existing knowledge of physics or robotics. Especially for learning dynamics models, these black-box models are not desirable as the underlying principles are well understood and the standard deep networks can learn dynamics that violate these principles. To learn dynamics models with deep networks that guarantee physically plausible dynamics, we introduce physics-inspired deep networks that combine first principles from physics with deep learning. We incorporate Lagrangian mechanics within the model learning such that all approximated models adhere to the laws of physics and conserve energy. Deep Lagrangian Networks (DeLaN) parametrize the system energy using two networks. The parameters are obtained by minimizing the squared residual of the Euler–Lagrange differential equation. Therefore, the resulting model does not require specific knowledge of the individual system, is interpretable, and can be used as a forward, inverse, and energy model. Previously these properties were only obtained when using system identification techniques that require knowledge of the kinematic structure. We apply DeLaN to learning dynamics models and apply these models to control simulated and physical rigid body systems. The results show that the proposed approach obtains dynamics models that can be applied to physical systems for real-time control. Compared to standard deep networks, the physics-inspired models learn better models and capture the underlying structure of the dynamics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助研友_LMyj0L采纳,获得10
刚刚
Distance发布了新的文献求助10
4秒前
上官若男应助Anesthesialy采纳,获得10
4秒前
5秒前
忧伤的冰薇完成签到 ,获得积分10
6秒前
7秒前
yujfki完成签到,获得积分20
8秒前
RenL完成签到,获得积分10
8秒前
鑫鑫完成签到,获得积分10
9秒前
奔波儿灞发布了新的文献求助10
10秒前
yoo发布了新的文献求助10
10秒前
诚心的源智完成签到 ,获得积分10
10秒前
二区发布了新的文献求助10
11秒前
NSGB完成签到 ,获得积分10
13秒前
14秒前
new完成签到 ,获得积分10
14秒前
haocong完成签到 ,获得积分10
15秒前
19秒前
20秒前
22秒前
活泼的梨愁完成签到,获得积分10
22秒前
qsw关闭了qsw文献求助
22秒前
朱俊燕完成签到,获得积分10
23秒前
研友_LMyj0L发布了新的文献求助10
24秒前
29秒前
屁颠屁颠_狼完成签到 ,获得积分10
29秒前
彩色的芝麻完成签到 ,获得积分10
30秒前
32秒前
32秒前
33秒前
35秒前
丘比特应助科研通管家采纳,获得10
35秒前
无花果应助科研通管家采纳,获得10
36秒前
yx_cheng应助科研通管家采纳,获得20
36秒前
东木应助科研通管家采纳,获得20
36秒前
yx_cheng应助科研通管家采纳,获得10
36秒前
隐形曼青应助科研通管家采纳,获得30
36秒前
梧桐给cvvvvv的求助进行了留言
36秒前
传奇3应助科研通管家采纳,获得30
36秒前
Bryan应助科研通管家采纳,获得10
36秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4010512
求助须知:如何正确求助?哪些是违规求助? 3550312
关于积分的说明 11305427
捐赠科研通 3284689
什么是DOI,文献DOI怎么找? 1810836
邀请新用户注册赠送积分活动 886556
科研通“疑难数据库(出版商)”最低求助积分说明 811499