Detection of COPD and Lung Cancer with electronic nose using ensemble learning methods

电子鼻 慢性阻塞性肺病 肺癌 医学 气体分析呼吸 鼻子 软件可移植性 内科学 人工智能 机器学习 计算机科学 外科 解剖 程序设计语言
作者
V A Binson,M. Subramoniam,Luke Mathew
出处
期刊:Clinica Chimica Acta [Elsevier]
卷期号:523: 231-238 被引量:57
标识
DOI:10.1016/j.cca.2021.10.005
摘要

The chemical gas sensor array based electronic-nose (e-nose) devices with machine learning algorithms can detect and differentiate expelled breath samples of patients with various respiratory ailments and controls. It is by the recognition of levels and variations of volatile organic compounds (VOC) in the exhaled air. Here, we aimed to differentiate chronic obstructive pulmonary disease (COPD) and lung cancer from controls.This work presents the details of the developed e-nose system, selection of the study subjects, exhaled breath sampling method and detection, and the data analysis algorithms. The developed device is tested in 199 participants including 93 controls, 55 COPD patients, and 51 lung cancer patients. The main advantage of the device is robustness and portability and cost-effectiveness.In the training phase and model validation phase, the ensemble learning method XGBoost outperformed the other two models. In the prediction of lung cancer, XGBoost method attained a classification accuracy of 79.31%. In COPD prediction also the same method had given the better results with 76.67% accuracy.The e-nose system developed with TGS gas sensors was portable, low cost, and gave a rapid response. It has been demonstrated that the VOC profiles of patients with pulmonary diseases and healthy controls are different and hence the e-nose system can be used as a potential diagnostic device for patients with lung diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香飘飘发布了新的文献求助10
刚刚
刚刚
明理豁完成签到 ,获得积分10
1秒前
2秒前
2秒前
领导范儿应助那些年采纳,获得10
2秒前
2秒前
Phd侯完成签到,获得积分20
2秒前
3秒前
牛战士从不摘下面具完成签到,获得积分10
4秒前
桃花依旧完成签到,获得积分10
4秒前
明理豁关注了科研通微信公众号
5秒前
5秒前
5秒前
bkagyin应助小葡萄采纳,获得10
6秒前
照度计发布了新的文献求助10
7秒前
daihq3发布了新的文献求助10
8秒前
accept发布了新的文献求助10
8秒前
科研蝗虫完成签到,获得积分10
8秒前
Jyuanh完成签到,获得积分10
9秒前
YaHe发布了新的文献求助10
10秒前
11秒前
11秒前
Hanni完成签到 ,获得积分10
14秒前
15秒前
郭慧梅发布了新的文献求助10
15秒前
15秒前
15秒前
volvoamg发布了新的文献求助10
16秒前
daihq3完成签到,获得积分10
17秒前
17秒前
17秒前
所所应助YaHe采纳,获得10
17秒前
17秒前
科研废柴完成签到,获得积分20
18秒前
18秒前
悲惨的时光完成签到 ,获得积分10
19秒前
pio完成签到,获得积分10
19秒前
YiRa完成签到,获得积分10
20秒前
corp_9完成签到,获得积分10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3515778
求助须知:如何正确求助?哪些是违规求助? 3098003
关于积分的说明 9237753
捐赠科研通 2792964
什么是DOI,文献DOI怎么找? 1532775
邀请新用户注册赠送积分活动 712297
科研通“疑难数据库(出版商)”最低求助积分说明 707233