The influence of micro vortex generator on inception cavitation
层流
空化
物理
机械
涡流
边界层
流动分离
涡流发生器
作者
Jie Chen,Cheng Hu,Mengjie Zhang,Biao Huang,Hanzhe Zhang
出处
期刊:Physics of Fluids [American Institute of Physics] 日期:2021-10-01卷期号:33 (10)被引量:7
标识
DOI:10.1063/5.0067266
摘要
The objective of the present paper is to investigate the influence of the micro vortex generator (mVG) on the inception cavitation number and mode around a National Advisory Committee for Aeronautics 66 hydrofoil. Two different sets of mVG with varying position are employed in this paper, i.e., the mVG-1 (located upstream of the laminar separation point of the baseline hydrofoil) and the mVG-2 (located in the laminar separation zone of the baseline hydrofoil). A high-speed camera is applied to visualize the inception cavitating structures, and numerical simulation is assisted to the effect of mVG. The results indicate that compared to the baseline hydrofoil, the mVG-1 can promote the earlier inception cavitation while the mVG-2 delays the inception, especially for the cases with smaller angle of attack (α = 4°–8°). For the mVG-1 hydrofoil, there are two reasons to be responsible for this phenomenon. One is that the fingerlike vortex at the rear of mVG-1 induces the fingerlike vortex cavitation earlier. The other is that the mVG-1 increases the length of the laminar separation bubble (LSB) by comparison with the baseline hydrofoil, thus causing a cavitation due to the laminar boundary layer separation. For the mVG-2 hydrofoil, it is located at the high-pressure zone of leading edge and reduces the length of the LSB. More precisely, the fingerlike vortex in the high-pressure zone is not enough to induce a fingerlike vortex cavitation, and the smaller length of the LSB than that of the baseline hydrofoil suppressing the cavitation at some angles of attack.