Exploratory analysis of LTPP faulting data using statistical techniques

虚假关系 探索性数据分析 描述性统计 回归分析 计算机科学 工程类 数据挖掘 统计 机器学习 数学
作者
Yu Chen,Robert L. Lytton
出处
期刊:Construction and Building Materials [Elsevier]
卷期号:309: 125025-125025 被引量:9
标识
DOI:10.1016/j.conbuildmat.2021.125025
摘要

Abstract Long-Term Pavement Performance (LTPP) database that stores considerable and free-to-access pavement information provides beneficial resources to researchers to develop transverse joint faulting prediction models that are very useful for joint concrete pavement design, rehabilitation and management. To develop accurate and robust faulting prediction models, the investigation of the LTPP faulting data is a prerequisite. This study conducted an Exploratory Data Analysis (EDA) of LTPP data by performing statistical analysis and graphically displaying the relevant factors and their correlation with faulting. This analysis was conducted based on two parts of the LTPP historical data, i.e., the pre-repair and post-repair faulting. For the pre-repair data, the relevant factors in faulting are classified into four categories, namely, traffic repetition, pavement information, local climate and material properties. To better examine the effect of the relevant factors in faulting, the descriptive statistics of factors were calculated and the grey relational analysis and the simple linear regression with one variable at a time were performed. In the regression testing, the P-value shows the significance of the individual relevant factors but it is likely to contradict the realistic relationships when the spurious correlation occurs. Through a thorough investigation, the study illustrated the rationale of the occurrence of the spurious correlation. For the post-repair data, the LTPP maintenance data were examined to evaluate the effectiveness of the individual maintenance treatment by calculating the faulting reduction after applying the treatment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
laosu发布了新的文献求助10
1秒前
1秒前
染墨发布了新的文献求助10
1秒前
1秒前
小陈呀完成签到 ,获得积分10
2秒前
2秒前
ggyy应助keyan采纳,获得10
2秒前
3秒前
万能图书馆应助WRC采纳,获得10
3秒前
4秒前
打打应助xd采纳,获得10
4秒前
WHW完成签到,获得积分10
4秒前
FFFFF应助满意的世界采纳,获得10
4秒前
布丁发布了新的文献求助10
5秒前
HHN完成签到 ,获得积分10
5秒前
zcg完成签到,获得积分10
6秒前
7秒前
nostalgic发布了新的文献求助10
8秒前
诱导效应发布了新的文献求助10
8秒前
求助人员发布了新的文献求助10
8秒前
陈陈发布了新的文献求助10
9秒前
科研通AI6应助西因采纳,获得10
9秒前
上官若男应助西因采纳,获得10
9秒前
9秒前
9秒前
我是老大应助yy采纳,获得30
10秒前
12秒前
EpQAQ完成签到,获得积分10
12秒前
张雨欣完成签到,获得积分10
12秒前
13秒前
yznfly应助满意的世界采纳,获得100
14秒前
orixero应助Minicoper采纳,获得10
14秒前
我不理解发布了新的文献求助10
14秒前
Aura完成签到,获得积分10
14秒前
15秒前
怡然的如冰完成签到 ,获得积分10
15秒前
WRC发布了新的文献求助10
17秒前
FashionBoy应助浅梦星河采纳,获得10
17秒前
852应助luofeiyu采纳,获得10
18秒前
G.D完成签到 ,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600865
求助须知:如何正确求助?哪些是违规求助? 4686434
关于积分的说明 14843611
捐赠科研通 4678481
什么是DOI,文献DOI怎么找? 2539007
邀请新用户注册赠送积分活动 1505954
关于科研通互助平台的介绍 1471241