光催化
污染物
化学
降级(电信)
反应速率常数
甲基橙
化学工程
废水
催化作用
环境化学
废物管理
环境工程
环境科学
有机化学
动力学
物理
工程类
电信
量子力学
计算机科学
作者
Yujun Ju,Hua Li,Ze Wang,Hanwen Liu,Shuhui Huo,Shan Jiang,Sicong Duan,Yonggang Yao,Xiaoquan Lu,Fengjuan Chen
标识
DOI:10.1016/j.cej.2021.133168
摘要
Organic pollutants in wastewater have raised great concerns because of their considerable risk to human health and the ecosystem. Although Fenton reaction of advanced oxidation process represents a promising water treatment strategy. However, continuous consumption and low utilization efficiency of H2O2 limit its practical application. Herein, we propose photocatalytic in-situ production and activation H2O2 at triphase interface to reach excellent removal efficiency for contaminants. The triphase interface configuration allows oxygen rapid diffusion from the air to the surface of photocatalyst and avoids the problem of poor mass transfer of oxygen in solution. Meanwhile, using the Z-type heterojunction MIL-101(Fe)/g−C3N4 as model photocatalysts could largely promote the photo-induced electrons and holes separation efficiency to further improve reaction efficiency. As a result, the triphase photocatalytic system achieved an in-situ H2O2 production rate of 4370 μmol h−1 (greater than5 times higher than the diphase control) and a superior degradation efficiency for organic pollutants (model pollutant: methyl orange, concentration: 10 ppm, 99% removal rate in 130 min, while only 21% in diphase control) with a 17.5 times higher reaction rate constant. Therefore, the triphase photocatalytic system realized the highly efficient degradation of organic pollutants in wastewater by solar-driven, in-situ generation and activation of H2O2 with high catalytic activity and minimized oxygen transport limitation, thus providing a green and sustainable strategy for wastewater treatment and broadly environmental remediation.
科研通智能强力驱动
Strongly Powered by AbleSci AI