Communication-Efficient Policy Gradient Methods for Distributed Reinforcement Learning

强化学习 瓶颈 计算机科学 架空(工程) 控制器(灌溉) 趋同(经济学) 分布式计算 人工智能 分布式算法 嵌入式系统 农学 经济增长 生物 操作系统 经济
作者
Tianyi Chen,Kaiqing Zhang,Georgios B. Giannakis,Tamer Başar
出处
期刊:IEEE Transactions on Control of Network Systems [Institute of Electrical and Electronics Engineers]
卷期号:9 (2): 917-929 被引量:34
标识
DOI:10.1109/tcns.2021.3078100
摘要

This article deals with distributed policy optimization in reinforcement learning, which involves a central controller and a group of learners. In particular, two typical settings encountered in several applications are considered: multiagent reinforcement learning (RL) and parallel RL , where frequent information exchanges between the learners and the controller are required. For many practical distributed systems, however, the overhead caused by these frequent communication exchanges is considerable, and becomes the bottleneck of the overall performance. To address this challenge, a novel policy gradient approach is developed for solving distributed RL. The novel approach adaptively skips the policy gradient communication during iterations, and can reduce the communication overhead without degrading learning performance. It is established analytically that: i) the novel algorithm has a convergence rate identical to that of the plain-vanilla policy gradient; while ii) if the distributed learners are heterogeneous in terms of their reward functions, the number of communication rounds needed to achieve a desirable learning accuracy is markedly reduced. Numerical experiments corroborate the communication reduction attained by the novel algorithm compared to alternatives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
土土完成签到,获得积分10
1秒前
Jessica英语好完成签到,获得积分10
2秒前
hyl发布了新的文献求助10
2秒前
蘇尼Ai完成签到,获得积分10
3秒前
3秒前
3秒前
嗄巧发布了新的文献求助10
4秒前
善学以致用应助郭大王采纳,获得10
4秒前
情怀应助至冬第一深情采纳,获得10
5秒前
5秒前
5秒前
杨琳发布了新的文献求助10
5秒前
鲤鱼初柳发布了新的文献求助10
6秒前
李健的小迷弟应助过冷风采纳,获得100
6秒前
Yoki完成签到,获得积分10
6秒前
李健应助Qyyy采纳,获得10
6秒前
累哥完成签到,获得积分20
6秒前
根号三完成签到,获得积分10
6秒前
饱饱发布了新的文献求助10
7秒前
搜集达人应助务实天德采纳,获得10
7秒前
科目三应助perway采纳,获得10
7秒前
7秒前
大魁发布了新的文献求助10
7秒前
微笑向卉发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
XXaaxxxx发布了新的文献求助10
9秒前
HL发布了新的文献求助200
9秒前
李健的粉丝团团长应助echo采纳,获得10
9秒前
所所应助Jessica英语好采纳,获得10
9秒前
在水一方应助VeraZ采纳,获得10
10秒前
邱寒烟aa发布了新的文献求助10
10秒前
木子西完成签到,获得积分10
10秒前
研友_nvGy2Z完成签到,获得积分10
10秒前
10秒前
xiasijian发布了新的文献求助10
10秒前
bkagyin应助猪猪hero采纳,获得10
11秒前
12秒前
lyl1995发布了新的文献求助10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952008
求助须知:如何正确求助?哪些是违规求助? 3497414
关于积分的说明 11087298
捐赠科研通 3228031
什么是DOI,文献DOI怎么找? 1784626
邀请新用户注册赠送积分活动 868824
科研通“疑难数据库(出版商)”最低求助积分说明 801198